
7 RAO AR92 724 FINDING MINIMUM-COST 
CIRCUL ATIONS BY SUCCESSIVE 

/

APPROXIMATION(U) MASSACHUSETTS INST OF TECH CAMBRIDGE
LAB FOR COMPUTER SCIENCE. A Y GOLDBERG ET AL. JUL 07

UNCLS I MIT /LCS/TM-333 Ni4 -C- 622 F/12/4 NL

EummhIhhhImhhhhhhhhhhl
mhmhhEmhhEohhE
III..ommmm



3

11111 1.
E l I l l -=

MICROCOPY RESOLUTION TEST CHARI

dR$ U ANARM 63 *&

""M



(JFILE COpY

LABORATORY FOR* MASSACHUSETTSCOMPUER SIENINSTITUTE OF
COPTR CECE TECHNOLOGY

N MITILCS/TM-333

I FINDING MINIMUM-COST
CIRCULATIONS BY-

SUCCESSIVE APPROXIMATION.

Andrew V. Goldberg T

Robert E. Tarjan

OTIC
SELECTE

MAR 0 91988U

July 1987

545 TECHNOLOGY SQUARE. CAMBRIDGE, MASSACHUSETrS 02139I ZTL~UTION STATEUDI A

DAprvc for public rnauq
Distribution 3 1 181ed



SECUIRITY CLASSIFICZATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
4,. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION I AVAJLABILITY OF REPORT

2b. DECLASSIFICATION/ DOWNGRADING SCHEDULE Approved for public release; distribution
is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)
MIT/LCS/TH-333 N00014-80-C-0622

60. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
HIT Laboratory for Computer (ifappicbie) Office of Naval Research/Department of Navy
Science

6c. ADDRESS (Gty, State, and ZIPCode) 7b. ADDRESS (City. State, and ZIP Code)

545 Technology Square Information Systems Program

Cambridge, MA 02139 Arlington, VA 22217

Sa. NAME OF FUNDING/ SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)
DARPA/DOD I

Sc. ADDRESS (City, State. and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
1400 Wilson Blvd. PROGRAM PROJECT TASK IWORK UNIT

Arlington, VA 22217 ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)

FINDING MINIMUM-COST CIRCULATIONS BY SUCCESSIVE APPROXIMATION

12. PERSONAL AUTHOR(S)
Goldberg, Andrew V. and TarJan, Robert E.

13a. TYPE OF REPORT 13b. TIME COVERED 114. DATE OF REPORT (Year, Month, Day) 15 PAGEQUNT
Technical I FROM TO 1987 July I

16 SUPPLEMENTARY NOTATION

16 6 .
17. COSATI CODES 18. SUBJECT TERMS nue on reverse if necesra and"mntify by block number)

FIELD GROUP SUB-GROUP Algorithms, network flows, minimum- cost flow, combinator-

ial optimization . .

1 "!7 CT (Continue on reverse if necessary and identiy by block number)

We develop a new approach to solving minimumcost circulation problems. Our approach

combines methods for solving the maximum flow problem with successive approximation

techniques based on cost scaling. We measure the accuracy of a solution by the amount that

the complementary slackness conditions are violated.
We propose a simple minimum-cost circulation algorithm, one version of which runs in

O(nllog(nC)) time on an n-vertex network with integer arc costs of absolute value at most

C. By incorporating sophisticated data structures into the algorithm, we obtain a time

bound of 0(nmlog(n2Jm)log(nC)) on a network with m arcs. A slightly different use of

our approach shows that a minimum-cost circulation can be computed by solving a sequence

of O(nlog(nC)) blocking flow problems. A corollary of this result is an 0(n (logn)log(nC)

time, n-processor parallel minimum-cost circulation algorithm. Our approach also yields
strongly polynomial minimum-cost circulation algorithms.

Our results provide evidence that the minimum-cost circulation problem is not much

20 DISTRIBUTION IAVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
( UNCLASSIFIEDAUNLIMITED 0 SAME AS RPT. r DTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (wc/m* Area Code) 22c. OFFICE SYMBOL

Judy Little. Publications Coordinator (617) 253-5894

DO FORM 1473.84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete

ML e Gmm m mt-U 00

Unclassified



19. harder than the maximum flow problem. We believe that a suitable implementation
of our method will perform extremely well in practice. -

4L~ !!

b



Finding Minimum-Cost Circulations
by

Successive Approximation*

Andrew V. Goldbergt*

Laboratory for Computer Science
M.I.T.

Cambridge MA 02139

Robert E. Tarjan§
Department of Computer Science

Princeton University
Princeton, New Jersey 08544

and
AT&T Bell Laboratories

Murray Hill, New Jersey 07974

July 1987

*A preliminary version of this paper appeared in the Proceedings of the Nineteenth Annual A.C.M.
Symposium on Theory of Computing, May 25-27, 1987.

tCurrent address: Department of Computer Science, Stanford University, Stanford, CA 94305.
$Supported by a Fannie and John Hertz Foundation Fellowship and by the Advanced Research Projects

Agency of the Department of Defense, Contract No. N00014-80-C-0622.
IPartially supported by the National Science Foundation, Grant No. DCR-8605962, and the Office of

Naval Research, Contract No. N00019-87-K-0467.

i

IN Mfi" W&N1'11



Abstract
We develop a new approach to solving minimum-cost circulation problems. Our

approach combines methods for solving the maximum flow problem with successive
approximation techniques based on cost scaling. We measure the accuracy of a solution
by the amount that the complementary slackness conditions are violated.

We propose a simple minimum-cost circulation algorithm, one version of which runs
in 0(n' log(nC)) time on an n-vertex network with integer arc costs of absolute value at
most C. By incorporating sophisticated data structures into the algorithm, we obtain
a time bound of O(nm log(n 2 /m) log(nC)) on a network with m arcs. A slightly dif-
ferent use of our approach shows that a minimum-cost circulation can be computed by
solving a sequence of O(n log(nC)) blocking flow problems. A corollary of this result is
an O(n 2 (log n) log(nC))-time, n-processor parallel minimum-cost circulation algorithm.
Our approach also yields strongly polynomial minimum-cost circulation algorithms.

Our results provide evidence that the minimum-cost circulation problem is not much
harder than the maximum flow problem. We believe that a suitable implementation of
our method will perform extremely well in practice.

1 Introduction

The minimum-cost circulation problem is that of finding a feasible circulation of minimum

cost in a network whose arcs have flow capacities and costs per unit of flow. Extensive

discussions of this problem and its applications can be found in the books of Ford and

Fulkerson [13], Jensen and Barnes [32], Lawler [36], Papadimitriou and Steiglitz [441, and

Tarjan [52].

Classical algorithms for the problem, such as the out-of-kilter method [17,41] and the

cheapest path augmentation method [8,33], run in exponential time in the worst case. All

known polynomial-time algorithms for the problem rely on the concept of scaling. Scaling

was introduced by Edmonds and Karp [12], who devised the first polynomial-time algorithm

for the problem. Scaling has also been applied to various other network optimization prob- oTIc

lems [18,19]. Scaling algorithms work by solving a sequence of subproblems whose numeric CoPY

parameters more-and-more closely approximate those of the original problem. A solution

to one subproblem helps to solve the next subproblem in the sequence. In the case of the

minimum-cost circulation problem, successive subproblems are obtained by adding one bit on Ir,_

of precision at a time either to the capacities (capacity scaling) or to the costs (cost scaling). UA&I
3 0 i

The algorithm of Edmonds and Karp scales capacities. Rck [45] was the first to propose 3 d 0
iced

an algorithm that scales costs. .atio

Table 1 summarizes known polynomial-time algorithms for the minimum-cost circulation

problem, including those proposed in this paper. Time bounds are given in terms of the Ition/

following parameters and functions: A,,,Liability Codes

Avail and/or
1 Dist Speoial



# Date Dacaverer Running Time References
I W ' Edmonds and Karp O(m log(U)S(n, m)) [12]
2 1960 Mck O(m log(U)S(n, m)) [45]
3 1980 RAk O(nlog(C)F(n,m,U)) [45]
4 1964 '1Twdoe O(m4 ) [50]
5 1964 Odin 0(m2 log(n)S(n, m)) 143]
6 1986 M he 0(m 2 log(n)S(n, m)) [161
7 1985 Bland and Jensen O(n log(C)F(n, m, U)) [7]
8 1986 Gall and Tawdos O(n 2 log(n)S(n, m)) [23]
9 1987 Goldberg and Tarjan 0(nmlog(n 2/m)min{log(nC), mlogn})

10 1981 Goldberg and Tarjan O(nB(n,in)min{log(nC),mlogn})

Table 1: Polynomial-time algorithms for the minimum-cost circulation problem. Algorithms 9
and 10 are presented in this paper.

n, the number of vertices;

m, the number of arcs;

U, the maximum absolute value of an arc capacity;

C, the maximum absolute value of an arc cost;

S(n, m), the time to solve a single-source shortest path problem with nonnegative arc costs,

as a function of x and m;

F(n, m, U), the time to find a maximum flow, as a function of n, m, and U;

B(n, m), the time to find a blocking flow on an acyclic network, as a function of n and m.

In bounds containing U or C, the capacities or costs, respectively, are assumed to be

integers. The best known bounds for S, F, and B are as follows:

S(n,m) = O(nlogn + m) [15]
F(nm,U) =O(nmlog(n2/m)) [29]

= 0(nlogU + nrn) [I]
B(R, m) = O(mnlog(n 2 /m)) (this paper, Section 8.1).

The algorithms in the table split into two classes, those that use capacity scaling (al-

gorithms 1, 2, 5, 6, and 8) and those that use cost scaling (algorithms 3, 4, 7, 9, and 10).

All the capacity scaling algorithms require a shortest path subroutine; all the cost scaling

2



algorithms require a maximum flow or related subroutine. Algorithms 4, 5, 6, 8, 9, and
10 are strongly polynomial: their running times are polynomial in n and m assuming that

arithmetic operations take 0(1) time, and the numbers they manipulate have a number

of bits polynomial in n, m, log U, and log C. The book of Papadimitriou and Steiglitz [44]

and the paper of Tardos [50] contain discussions of the notion of a strongly polynomial

algorithm.

It is difficult to compare the relative speeds of the various algorithms, because their time
bounds depend in different ways upon n, m, U, and C. Among the algorithms not based

on our approach (1-8), the dominant algorithms are 1 and 2, 3 and 7, and 8. Under the

assumption (see [19]) that log U and log C are @(log n), algorithms 1 and 2 have a bound

of O(m2 log n + nm(log n) 2 ), whereas algorithms 3, 7, and 8 have a bound of O(n 2m log n +

n3 (logn)2 ), larger by a factor of n 2/m.

In this paper we discuss a general approach to the minimum-cost circulation problem.
The approach uses successive approximation based on cost scaling. It combines the ideas

R6ck [45] used to develop algorithm 3, those Tardos [50] used to develop algorithm 4, those

Bland and Jensen [7] used to develop algorithm 7, and those Bertsekas [4] used to develop

a pseudopolynomial-time (i.e. polynomial in n, m, and C) algorithm for the problem. The

method works by finding an approximate solution and then iteratively refining the current
solution, at each iteration halving the error parameter e, until c is small enough so that
integrality of arc costs guarantees that the current solution is optimal. To measure the

accuracy of a solution, we use the concept of c-optimality, which is based on a relaxation
of complementary slackness conditions. This concept is related to the classical technique of

perturbing a linear programming problem to avoid degeneracy (see for example the book of

Gass [25]). Tardos [50] and Bertsekas [4] both used c-optimality (in different ways) in their

algorithms. The algorithm of Tardos fixes the flow on edges with sufficiently high reduced
cost. The algorithm of Bertsekas finds a minimum-cost circulation by locally modifying a

pseudoflow while preserving c-optimality. Using a lemma of Bertsekas and a generalization

of a lemma of Tardos, we show that 0(min{log(nC), m log n}) iterations of a refinement

subroutine suffice to compute a minimum-cost circulation.

We discuss two general ways to implement the refinement subroutine that is the heart
of the algorithm. Both are generalizations of maximum flow algorithms. The first method,

which we call the generic method, is a slight variation of the algorithm of Bertsekas [4]

that generalizes our maximum flow algorithm [29]. The generic method uses a sequence

3



of transformations to produce an c-optimal circulation. Bertsekas made the important

observation that these transformations preserve c-optimality. The analysis of the generic

method uses ideas similar to those in the analysis of the maximum flow algorithm [291.

We describe a simple version of the generic method with a running time of 0(n 3), giving

an 0(n 3 min{log(nC), m logn}) bound for the minimum-cost circulation problem. We call

this algorithm the wave method, because it resembles the wave algorithm for computing a

maximum flow [53]. The wave method was proposed by Charles Leiserson (private commu-

nication) and independently (minus certain implementation details and the use of scaling)

by Bertsekas [4]. A more complicated algorithm using two sophisticated data structures, dy-

namic trees [48,49 and finger search trees [39,54], yields an 0(nmlog(n2/m))-time bound

for refinement and an 0(nm log(n 2/m) min{log(nC), m log n})-time bound for finding a

minimum-cost circulation.

Our second implementation of refinement, the blocking flow method, uses 0(n) calls of

a blocking flow subroutine. It is a generalization of the maximum flow approach of Dinic

111]. The blocking flow approach also yields a simple 0(n 3)-time refinement algorithm,

based on known 0(n 2)-time blocking flow algorithms [35,38,46,53], and a more complicated

0(nm log(n 2/ m))-time refinement algorithm, based on a new blocking flow algorithm (pre-

sented in Section 8). The blocking flow method also yields an 0(n 2 log n)-time, n-processor

parallel refinement algorithm, based on the parallel blocking flow algorithm of Shiloach and

Vishkin [46]. This gives an 0(n 2 log n min{log(nC), m log n))-time, n-processor algorithm

for the minimum-cost circulation problem.

If C = Q(nn 1- ') and C = Q(Ua(m/(nlogn)+i)/n) for some positive constants 6 and a, then

our 0(nmlog(n2/m)min{log(nC), m log n}) sequential time bound for finding a minimum-

cost circulation is as small as the bound for any other method. Under the assumption that

log U and logC are e(logn), our bound significantly improves over previous bounds.

This paper is a revised and extended version of one chapter of the first author's thesis [26]

and of a conference paper [30]. Working from an extended abstract of the conference paper,

Bertsekas and Eckstein [5] developed an 0(n3 log(nC)) minimum-cost circulation algorithm

using a more traditional cost-scaling approach in combination with the wave methnd. This

algorithm is a minor variation of a version of algorithm 9 and therefore is not mentioned

in Table 1. The bounds we derive in this paper can also be derived using traditional cost

scaling; in fact, the first versions of our algorithm used this approach. The successive

4



approximation approach, however, seems preferable for at least two reasons. First, it allows

the use of true costs throughout the algorithm; no rounding is needed. Second, it leads very

naturally to strongly polynomial algorithms.

2 Foundations

In this section we define the minimum-cost circulation problem and introduce terminology

to be used throughout the paper. We also review conditions for a circulation to be optimal,

i.e. minimum-cost, and introduce the notion of E-optimality, which plays a central role in

our approach.

The minimum-cost circulation problem is a generalization of the maximum flow problem

obtained by adding a cost per unit of flow to each arc. Since this problem is a special case

of the linear programming problem, it is usually defined in linear programming terms. Al-

though we use concepts and results that have their roots in linear programming theory, most

of the arguments presented in this paper are graph-theoretic. Consequently, we formulate

the problem in graph-theoretic terms. Our formulation is equivalent to other formulations

of the minimum-cost flow and minimum-cost circulation problems that can be found in

standard works on linear programming and network optimization, including those cited in

Section 1.

2.1 Definitions

A circulation network is a directed graph G = (V, E) with a capacity u(v, w) and a cost

c(v, w) associated with each arc' (v, w). We require G to be symmetric, i.e. (v, w) E E

implies (w, v) E E. We denote the size of V by n and the size of E by m, and we assume

(for ease in stating time bounds) that m > n - 1 > 1. We call an unordered pair {v, w)

such that (v, w) E E an edge of G. We assume that the cost function satisfies the following

constraint for each (v, w) E E:

c(v, w) = -c(w, v) (cost antisymmetry constraint). (1)

A pseudoflow is a function f : E --+ R satisfying the following constraints for each

(v, w) E:

f(v, w) !5 u(v, w) (capacity constraint), (2)

'We refer to ordered pairs of vertices as arcs, and to unordered pairs of vertices as edges.

5



f(v, w) = -f(w, v) (flow antisymmetry constraint). (3)

Remark: The fow antisymmetry constraints imply -u(w, v) : f(v, w) < u(v, to); this

means that there are implied lower bounds as well as upper bounds on flow. In the usual

formulation of the minimum-cost circulation problem these lower bounds are explicitly

given. We have chosen the present formulation because it simplifies the statement of con-

straints such as (2) and simplifies some proofs. Our results easily extend to allow multiple

arcs, infinite capacities, and costs that are not antisymmetric.

For a pseudolow f and a vertex v, the excess flow into v, ej(v), is defined by e1 (v) =

, f(u, v). A vertex v with ef(v) > 0 is called active. Observe that Z:.v ej(v) = 0.

A circulation is a pseudoflow f such that, for each vertex v,

ef(v ) = 0 (Bow conservation constraint). (4)

Observe that a pseudofilow f is a circulation if and only if there are no active vertices. The

cost of a pseudodlow f is given by the following expression:

cost(f) = 1 1: c(v, wMfV'i). 5

(The factor of 1/2 appears because the sum counts the cost of the flow through each edge

twice.) The minimum-cost circulation problem is that of finding a circulation of minimum

cost.

We shall need several other concepts. Let G be a directed graph with arc cost function

c. The length of a path or cycle in G is the number of arcs it contains. The cost c(r) of a

path or cycle r is the sum of the costs of the arcs on the path or cycle. The mean cost of a

cycle is the cost of the cycle divided by the length of the cycle.

For a pseudoflow f and an arc (v,w), the residual capacity of (v,w) is uj(v,w) =

u(v, )- f(v, t). An arc (v, w)is saturated if uf(v, w) = 0. An arc (v, w) is a residual arc

if it is not saturated, i.e. u1 (v, w) > 0. The residual graph Gf = (V, Ef) is the directed

graph with vertex set V and arc set Ef = {(v, w) uj(v, w) > 0}.

A price function p is a function p : V -- R. For a price function p, the reduced cost

of an arc (v,w) is c,(v,w) = c(v,w) - p(v) + p(w). The flow conservation constraint (4)

implies that the cost of a minimum-cost circulation is the same whether the original costs or

6

b.



the reduced costs with respect to some price function are used. In the linear programming

formulation of the minimum-cost circulation problem, the prices are the dual variables.

2.2 Optimality and Approximate Optimality

There are two classical characterizations of minimum-cost circulations, both of which we

shall use.

Theorem 2.1 ([9]) A circulation f is minimum-cost if and only if the residual graph con-

tains no cycle of negative cost.

Theorem 2.2 ([13]) A circulation f is minimum-cost if and only if there is a price function

p such that, for each arc (v, w),

c,(v, w) < 0 =* f(v, w) = u(v, w) (complementary slackness constraint). (6)

For a pseudoflow f, an arc (v, w) is said to be in kilter (after the out-of-kilter method

[17,411) if it satisfies (6) and out of kilter otherwise. Figure la shows a kilter diagram 136),

which is a pictorial representation of the complementary slackness constraints.

We need a notion of approximate optimality, which we obtain by relaxing the comple-

mentary slackness constraints. This relaxation was previously used in the minimum-cost

flow algorithms of Tardos [50] and Bertsekas [4,6]. For a constant c > 0, a pseudoflow f is

said to be c-optimal with respect to a price function p if, for every arc (v, w), we have

cp(v, w) < -E =: f(v, w) = u(v, w) (c-optimality constraint). (7)

A pseudoflow f is c-optimal if f is c-optimal with respect to some price function p. Figure

lb illustrates the concept of c-optimality in terms of kilter diagrams. A circulation f is

c-tight if f is c-optimal and for any c' < c, f is not c'-optimal. A circulation f is e-tight

with respect to a price function p if f is c-tight and f is c-optimal with respect to p.

Observe that a pseudoflow f is c-optimal with respect to a price function p if and only if

cp(v, w) -e for every residual arc (v, w). It is in this form that we shall use the definition.

A crucial property of c-optimality is that if the arc costs are integers and c is small

enough, any E-optimal circulation is minimum-cost. The following theorem is a result of

Bertsekas.

7



l~~~v~~t41 ______ ,s) Wvt

(a) Kilter diagram (b) Approximate optimality

Figure 1:
(a) Kilter diagram. If f is an optimal circulation, the point corresponding to the arc (v, w) is
on the heavy curve.
(b) c-optimality. If f is e-optimal, the point corresponding to the arc (v, wn) can be in the shaded
rectangle as woell as on the heavy curve.

Theorem 2.3 ([41) If all costs are integers and c < 1/n, then an c-optimal circulation f is

minimum-cost.

Proof: Consider a simple cycle in Gf. The c-optimahity of f implies that the reduced cost
of the cycle is at least ne > -1. The reduced cost of the cycle equals its original cost, which
must be integral and hence nonnegative. Theorem 2.1 implies that f is minimum-cost.

3 Fitting Price Functions and Tight Error Parameters

The definition of c-optimality motivates the following two problems:

8I



1. Given a pseudoflow f and a constant c > 0, find a price function p such that f is

c-optimal with respect to p, or show that there is no such price function (i.e. f is not

c-optimal).

2. Given a pseudoflow f, find the c such that f is c-tight (i.e. the smallest C > 0 such

that f is c-optimal).

Solutions to these problems are needed in our strongly polynomial minimum-cost circulation

method and can be used to give heuristic improvements in our weakly polynomial method.

The problem of finding an optimal price function given an optimal circulation is the special

case of problem 1 with c = 0. In this section we shall show that both problems can be

solved in 0(nm) time, the first by doing a Bellman-Ford shortest path computation (see

e.g. [52]), the second by applying an algorithm of Karp [34] for computing the minimum

mean cost of a cycle in a directed graph with arc costs. We also show that an important

special case of problem 1 arising in our weakly polynomial method can be solved in O(m)

time, by using the Dial-Wagner implementation [10,55] of Dijkstra's shortest path algorithm

(see e.g. [52]).

To address these problems, we need some results about shortest paths and shortest path

trees (see e.g. [52]). Let G be a directed graph with a distinguished source vertex s and a

cost c(v, w) on every arc (v, w). For a spanning tree T rooted at s, the tree cost function

d : V --+ R is defined recursively as follows: d(s) = 0, d(v) = d(parent(v)) + c(parent(v), v)

for v E V - is), where parent(v) is the parent of v in T. A spanning tree T rooted at

s is a shortest path tree if and only if, for every vertex v, the path from s to v in T is a

minimum-cost path from a to v in G, i.e. d(v) is the cost of a minimum-cost path from s

to V.

Lemma 3.1 (see e.g. [52]) Graph G contains a shortest path tree if and only if G contains

no negative-cost cycle.

Lemma 3.2 (see e.g. [52]) A spanning tree T rooted at s is a shortest path tree if and only

if c(v, w) + d(v) d(w) for every arc (v, w) in G.

3.1 Finding a Fitting Price Function

Consider problem 1: given a pseudoflow f and a nonnegative c, find a price function p
with respect to which f is c-optimal, or show that f is not c-optimal. Define a new cost

9



function cl :. E . by c(')(v, w) = c(v, w) + e. Extend the residual graph G! by

adding a single vertex a and arcs from it to all other vertices to form an auxiliary graph

G.= = (V., Eu) = (VU{s}, E1U({s} x V)). Extend c(f) to G.. by defining c(W)(s, v) = 0

for every arc (s, v), where v E V. Note that every vertex is reachable from s in Gau.

Theorem 3.3 Pseudjtow f is c-optimal if and only if G~ua, (or equivalently Gf) contains

no cycle of negative c(l)-cost. If T is any shortest path tree of Gau. (rooted at s) with respect

to the arc cost fumction c('), and d is the associated tree cost function, then f is c-optimal

with respect to the price junetion p defined by p(v) = -d(v) for all v E V.

Proof: Suppose f is e-optimal. Any cycle in G,= is a cycle in Gf, since vertex s has
no incoming arcs. Let I' be a cycle of length I in Gu,. Then c(r) > -IE, which implies

c(t)(r) = c(r) + ie _> 0. Therefore G, contains no cycle of negative c(')-cost.

Suppose G... contains no cycle of negative c(e)-cost. Then by Lemma 3.1 G.,. has

some shortest path tree rooted at s. Let T be any such tree and let d be the tree cost

function. By Lemma 3.2, c(l)(v, w) + d(v) > d(w) for all (v, w) E E1 , which is equivalent to

c(')(v, w) + d(v) - d(w) > -e for all (V, wv) E Ej. But these are the f-optimality constraints

for the price function p = -d. Thus f is c-optimal with respect to p. I

Remark: Theorem 3.3 holds for any assignment of costs to the arcs (s, v). We have assigned

zero costs to these edges merely for simplicity.

Using Theorem 3.3, we can solve problem 1 by constructing the auxiliary graph Ga.,
and finding either a shortest path tree or a negative-cost cycle. Constructing Gau, takes

O(m) time. Finding a shortest path tree or a negative-cost cycle takes 0(nm) time using

the Bellman-Ford shortest path algorithm (see e.g. (52]).

An important special case of problem 1 arises in connection with Theorem 2.3. Suppose
the arc cost function c is integral, f is a pseudoflow c-optimal with respect to a price function

p , and e < 1/n. By Theorem 2.3, f is optimal. The question arises of how to compute a

price function p with respect to which f is optimal. Knowing P, helps to find such a price
function; we shall show how this computation can be done using Dijkstra's shortest path

algorithm.

We use a variant of the previous construction. Define Gau as above:

G.. = (V,,, E,) = (V U {}, Ef U ({s} x V)).

10

Ml



Extend p, and c to G., by defining pe(s) = 0, c(s, v) = -[p(v)J for all v E V. Define a

new cost function c' on E. as follows:

c'(v, w) = cp, (v, w) + E = c(,, w) - p,(v) + p,(w) + e.

Observe that c-optimality implies c'(v, w) >_ 0 for all (v, w) E E1 , and the definition of

c' implies that 0 < c'(s, v) < 1 + e for all v E V.

Theorem 3.4 Let T be a shortest path tree in Ga., (rooted at s) with respect to the cost

function c. Let d, be the tree cost function on T with respect to the arc cost function cp,.

Then f is optimal with respect to the price function p defined by p(v) = p,(v) - d(v).

Proof: Let (v, w) E Ef.We must prove that c(v, w) - pc(v) + d,(v) + pc(w) - de(w) > 0,

i.e. cp,(v, w) + d(v) > d(w). Let d' be the tree cost function with respect to the arc cost

function c'. The definitions of c' and d' imply that c'(v, w) = c,(v, w)+nc, d'(v) <_ d,(v)+nc,

and d'(w) 2! d,(w) + c. Combining these with the inequality c'(v, w) + d'(v) 2! d'(w) given

by Lemma 3.2, we find that

cp(v, w) + d(v) 2! d,(w) - nE > d,(w) - 1.

But the integrality of c and the definitions of cp, and d, imply that cp.(v, w) + d,(v) =

i + p,(w) and d,(w) = j + p,(w) for some integers i and j. Since i + p,(w) > j + p,(w) -1

implies that i > j, we must have c,,(v, w) + d,(v) >_ dE(w). I

By Theorem 3.4, we can compute a price function p with respect to which f is optimal

by solving a single source shortest path problem on a graph with nonnegative arc costs

and doing 0(m) additional work (to construct G., ,, and to compute p given a shortest

path tree). We can solve the shortest path problem in 0(m + n log n) time with Dijkstra's

algorithm implemented using Fibonacci heaps (15].

If 1/c is an integer of size 0(n) and, for every v, pe(v) is an integer multiple of C, then

the time to solve the shortest path problem can be reduced to 0(m). In this case, c'(v, w)

is an integer multiple of e for every (v, w). Since in this case c'(s, v) < 1 for every v E V, it

follows that d'(v) < 1. Thus if all edge costs are multiplied by 1/c, the result is a shortest

path problem with nonnegative integer arc costs such that all minimum-cost paths from s

have cost 0(n). The algorithm of Dial (10] and Wagner [55] will solve such a problem in

0(m) time.

11i



3.2 Finding a Tight Error Parameter

Let us turn to problem 2: given a pseudoflow f, find the c such that f is e-tight. We
need a definition. For a directed graph G with arc cost function c, the minimum cycle

mean of G, denoted by p(G, c), is the minimum mean cost of a cycle in G. Karp [34] has

given an O(nm) algorithm to compute p(G, c). This problem is a special case of the so-

called "tramp steamer" problem; see [36] for additional references. The connection between

minimum cycle means and tight error parameters is given by the following theorem:

Theorem 3.5 For a pseudoflow f, the e for which f is c-tight is c = max{O, -u(Gf, c)}.

Proof: Consider any cycle r in Gf. Let the length of r be 1. For any e, let c(O) be the cost

function defined in Section 3.1: c(l)(v, w) = c(v, w) + e for (v, t) E Ef. Let c be such that f
is c-tight, and let u = p(Gj,c). By Theorem 3.3, 0 < c(c)(r) = c(r) + ic, i.e. c(I)/l > -c.

Since this is true for any cycle r, is 2! -c, i.e. c > -p. Conversely, for any cycle r,

c(r)/1 > I, which implies c(-(7) > 0. By Theorem 3.3, this implies max{0, -1&} - e. I

By Theorem 3.5 a tight error parameter can be computed in O(nm) time by applying

Karp's minimum cycle mean algorithm.

We conclude this section with an observation regarding the structure of c-tight pseud-
oflows. Suppose f is an c-tight pseudoflow and c > 0. Let p be a price function such that

f is E-optimal with respect to p, and let r be a cycle in G! with mean cost -c. Since -E is

a lower bound on the reduced cost of an arc in G, every arc of r must have reduced cost

exactly t.

4 The Minimum-Cost Flow Framework

In this section we give a high-level description of our minimum-cost circulation algorithms.

First we describe a successive approximation framework. The running times of the algo-
rithms developed within this framework depend on C, the biggest absolute value of the costs.
Then we show that a natural modification of this framework leads to strongly polynomial

algorithms.

12



procedure min-cosi(V, E, u, c);
[initialization]
C -- C;
Vv, p(v) 4- 0;
if 3 a circulation then f +- a circulation else return(null);
[loop]
while c > 1/n do

(c,f, p) - eine(cf, p);
returnf);

end.

Figure 2: The successive approximation algorithm. Versions of refine described in this paper
decrease e by a factor of two.

4.1 The Successive Approximation Framework

In this section we give a high-level description of our successive approximation algorithm (see

Figure 2). We assume here that the arc cost function is integral. The algorithm maintains

a circulation f, and a price function p,, such that f, is c-optimal with respect to Pc. The

algorithm starts with 4 = C (or alternatively e = 2 r1052 C1 ), with p(v) = 0 for all vcV, and

with any initial circulation. An initial circulation can be found using one invocation of any

maximum flow algorithm. (See e.g. [44], problem 11(e), p. 215.) Any initial circulation is

C-optimal. The algorithm maintains the invariant that the circulation f is c-optimal with

respect to the price function p. The main loop of the algorithm repeatedly reduces the error

parameter c. When c < 1/n, the current circulation is minimum-cost, and the algorithm

terminates.

Reducing the error in the optimality of the current circulation is the task of the sub-

routine refine. The input to refine is an error parameter c, a circulation f, and a price

function p such that f is c-optimal with respect to p. The output from refine is a reduced

error parameter c, a new circulation f, and a new price function p such that f is c-optimal

with respect to p. The implementations of refine described in this paper reduce the error

parameter 4 by a constant factor (two unless mentioned otherwise).

The correctness of the algorithm is immediate from Theorem 2.3, assuming that refine

is correct. The number of iterations of refine is O(log(nC)). The initialization is dominated

by the time to compute a circulation, which is O(nm log(n2 /m)) [29]. The bounds we shall

obtain for various versions of refine are all (l(mn log(n 2 /m)). Thus the iterations of refine

dominate the running time of the algorithm, giving us the following theorem:

13



Theorem 4.1 A minimum-cost circulation can be computed in the time required for

O(log(nC)) ite rtion of refine, if refine reduces e by a factor of two.

Remark: The minimum-cost circulation algorithm need not begin with a circulation; it can

begin with any pseudoflow. If the problem is infeasible, this fact will be discovered during

the first invocation of refine. Beginning with a circulation simplifies the presentation below,

because we do not have to worry about feasibility.

Remark: Some applications require an optimal price function in addition to an optimal

circulation. Once an optimal circulation f is found, a price function p with respect to

which f is optimal can be computed in O(m) time as described in Section 3.1, assuming

that the initial value of e was chosen to be a power of two.

We conclude this section by comparing our approximation approach with the traditional

cost-scaling algorithms of Rbck [45] and of Bland and Jensen (7]. These algorithms use a

maximum fow routine in the inner loop. Our algorithms are similar to these cost-scaling al-

gorithms in that refine, as we implement it, can be viewed as a generalization of a maximum

flow algorithm. The previous algorithms, however, require O(n) maximum-flow computa-

tions to halve the error parameter, whereas our algorithm requires only one invocation of
refine. This accounts for our improved time bounds.

The traditional cost-scaling approach, where precision of the costs is increased bit-by-bit,
can be used instead of our successive approximation approach. We used traditional scaling

in the first veruiom of our algorithm; later, traditional scaling was used by Bertsekas and

Eckstein [5). Suppose that the current precision of costs is c and we have an c-optimal

circulation. If we add the next bit of costs, the circulation is (3/2)c-optimal with respect
to the resulting cost function. Applying a version of the refine subroutine that reduces

the error parameter by a factor of three, we obtain an c/2-optimal circulation. Repeating

this step O(log(nC)) times, we obtain an optimal circulation. Asymptotic bounds for this
approach are the same as for the successive approximation approach, but the constant
factors are somewhat worse because of the additional errors introduced when new bits of
costs are added. A potential advantage of this approach is that a smaller number of bits

must be considered when manipulating the costs. For most practical applications, however,
the costs are small and word operations can be used on them.

14



procedure min-cost(V, E, u, c);
[initialization]
C -C;
VV, P(V) 4-- 0;
if 3 a circulation f then f -- a circulation else return(null);
[loop]
while c > 0 do begin

(*) find A and p% such that f is A-tight with respect to pA;
if A > 0 then (c, f,p) +- refine(A,f,px)
else return(f);

end.

Figure 3: The strongly polynomial algorithm. Versions of refine described in this paper decrease
c by a factor of two.

4.2 The Strongly Polynomial Framework

The minimum-cost circulation algorithm of Section 4.1 has the disadvantage that the num-

ber of iterations of refine depends on the magnitudes of the costs. If the costs are huge

integers, the method need not run in time polynomial in n and m; if the costs are irrational,

the method need not even terminate. In this section we show that a natural modification
of our successive approximation approach produces strongly polynomial algorithms, i.e.

algorithms running in time polynomial in n and m, assuming arbitrary real numbers as

capacities and costa and infinite-precision arithmetic. The running time bounds we shall

derive for algorithms based on the approach of Section 4.1 are valid for the modified ap-

proach presented in this section. Unlike the previous strongly polynomial algorithms, our

approach uses no rounding: true capacities and costs are used throughout.

The changes needed to make our approach strongly polynomial are to add an extra

computation to the main loop of the algorithm and to change the termination condition.

Before calling refine to reduce the error parameter c, the new method computes the value

A and a price function p,\ such that the current circulation f is A-tight with respect to pA.

The strongly polynomial method is described on Figure 3. The value of A and the price

function p\ in line (*) are computed as described in Section 3. The algorithm terminates

when the circulation f is optimal, i.e. A = 0.

The time to perform line (*) is O(nm) by the results of Section 3. Since all the im-

plementations of refine that we shall consider have a time bound greater than O(nm), the

extra time per iteration in the new version of the algorithm exceeds the time per iteration

in the original version by less than a constant factor. Since each iteration at least halves c,

15

" " -i~~ , v r . ,',"J, " "'S S S *



the bound of O(log(nC)) on the number of iterations derived in Section 4.1 remains valid,

assuming that the costs are integral.

For arbitrary real-valued costs, we shall derive a bound of O(mlogn) on the number

of iterations, assuming that the refine subroutine used decreases the error parameter by a

constant factor. We start by proving the following theorem, which is a slight generalization

of a lemma of Tardos [50]. (To obtain the lemma of Tardos, take c' = 0.)

Theorem 4.2 Let e > 0, e' _> 0 be constants. Suppose that a circulation f is c-optimal

with respect to a price function p, and that there is an arc (v, to) E E such that Icp(v, w)I _

n(c + e). Then for any e'-optimal circulation f', we have f(v, w) = f'(v, w).

Proof: By antisymmetry, it is enough to prove the theorem for the case cp(v, w) 2! n(c + c').

Let fl be a circulation such that f(v, w) $ f(v, w). Since cp(v, w) > e, the flow through

the arc (v, w) must be as small as the capacity constraints allow, namely -u(w, v), and

therefore f'(v, wo) 0 f(v, w) implies f(v, w) > f(v, to). We show that f' is not c'-optimal,

and the theorem follows.

Consider G> = {(z, V) e Elf'(z, y) > f(z, y)}. Note that G> is a subgraph of Gf, and

(v, w) is an arc of G>. Since f and f' are circulations, G> must contain a simple cycle r
that passes through (v, w). Let 1 be the length of r. Since all arcs of r are residual arcs,

the cost of r is at least

cp(v, w)- (1 - 1)e > n(f + c) - (n - I)e > nc'.

Now consider a cycle r obtained by reversing the arcs on r. Note that r is a cycle in

G< = {(z,V) E Elf(z, y) < f(z,1)) and therefore a cycle in Gf.. By antisymmetry, the

cost of r is less than -ne' and thus the mean cost of r is less than -c'. Theorem 3.5 implies

that f is not £'-optimal. I

To state an important corollary of Theorem 4.2, we need the following definition. We

say that an arc (v, w) E E is c-fired if the flow through this arc is the same for all c-optimal

circulations.

Corollary 4.3 Let e > 0, suppose f is (-optimal with respect to a price function p, and

suppose that for some arc (v, w), lc,(v, w)I 2 2n. Then (v, w) is c-fixed.

Define F, to be the set of F-fixed arcs.

16



Lemma 4.4 Assume e < 1. Suppose that there exists an c-tight circulation f. Then F,

properly contains F,.

Proof: Since every t'-optimal circulation is e-optimal, we have F, g F,. To show that the

containment is proper, we have to show that there is an c'-fixed arc that is not c-fixed.

Since the circulation f is c-tight, there exists a price function p such that f is C-optimal

with respect to p, and there exists a simple cycle r in G! with a mean cost of -c (see

Section 3.2). Since increasing f along r preserves c-optimality, arcs of r axe not c-fixed.

We show that at least one arc of IF is c-fixed. Let f' be a circulation that is '-optimal

with respect to some price function p'. Since the mean cost of r7 is -e, there is an arc (v, w)

of r with c,(v, to) < -c < -2nc; by antisymmetry cp,(w, v) > 2nc. By Corollary 4.3, the

arc (v, w) is e-fixed. But (v, to) is not c-fixed since (v, to) is an arc of r. I

As t'ie strongly polynomial algorithm runs, the value of the error parameter c decreases;

each time this value decreases by a factor of 2n, at least one arc becomes fixed. If all

arcs are fixed with respect to the current value of c, the current circulation is optimal and

the algorithm terminates during the next execution of line (*). (Since not every arc is

necessarily 0-fixed, the algorithm may terminate before all arcs are fixed.)

Theorem 4.5 If refine reduces the error parameter c by a constant factor, the total number

of iterations of the while loop is O(m log n).

Proof: Consider a time during the execution of the algorithm. During the next O(logn)

iterations, either the algorithm terminates, or the error parameter is reduced by a factor

of 2n. In the latter case, Lemma 4.4 implies that an arc becomes fixed. If all arcs become

fixed, the algorithm terminates in one iteration of the loop. Therefore the total number of

iterations is O(mlogn). I

Section 7 contains a version of our minimum-cost circulation algorithm that runs in

O(nmlog(n2 /m) min{log(nC), mlogn}) time. If the arc costs are huge, the strongly poly-

nomial algorithm of Gail and Tardos [23], which runs in O(n 2(logn)(nlogn + m)) time, is

faster than our algorithm except on sparse graphs. Perhaps our algorithm can be improved

to run in O(n log n) iterations, possibly by using some of the ideas in the Galil-Tardos paper.

If this conjecture is true, our method would be competitive with that of Galil and Tardos

on both sparse and dense graphs, and slower by a factor of log n on graphs of intermediate

density.

17



procedure refise(c, f, p);
[initialization]
e4,-- c/2;

V(v, w) E E do if c(v, w) < 0 then f(v, w) -- u(v, w);
POOP)
while 3 a flow or price update operation that applies do

select such an operation and apply it;
return(e, f, p);

end.

Figure 4: The generic refine subroutine.

5 A Generic Refinement Algorithm

In this section we describe an implementation of refine that is a generalization of our

maximum flow algorithm [27,29]. We call this the generic implementation. The generic

refine subroutine is a slight variant of the earlier minimum-cost flow algorithm of Bertsekas

[4]. We use the subroutine in a different way, however. Whereas we use the subroutine

repeatedly, each time to halve the error parameter e, Bertsekas computes a minimum-cost

flow by choosing an e small enough that a single run of refine will convert an arbitrary

circulation into an optimal circulation. Unfortunately, the latter approach results in only

a pseudopolynomial-time algorithm, whereas we shall derive small polynomial time bounds

for various versions of our algorithm.

As we have mentioned in Section 4.1, the input and output to refine is a triple (e, fe,,p).

The main effect of refine is to reduce e by a factor of two.

The generic refine subroutine is described on Figure 4. It begins by halving c and

saturating every arc with negative reduced cost. This converts the circulation f into an

c-optimal pseudoflow (indeed, into a 0-optimal pseudoflow). Then, the subroutine converts

the e-optimal pseudoflow into an c-optimal circulation by applying a sequence of flow and

price update operations, each of which preserves c-optimality. The idea of preserving C-

optimality in this context is due to Bertsekas (4].

The inner loop of our generic algorithm consists of repeatedly applying the two kinds

of update operations described in Figure 5, in any order, until no such operation applies.

Figure 6 illustrates the update operations in terms of kilter diagrams.

A pu h operation applies to a residual arc (v, w) of negative reduced cost, such that

vertex v is active. It consists of pushing 6 = min{el(v), u1 (v, w)) units of flow from t to

18



push(v, w).
Applicability: v is active, uj(v,w) > 0, and c.(v,w) < 0.
Action: send 6 = min(ej (v), u1 (v, w)) units of flow from v to w.

relabel(v).
Applicability: v is active and Vw E V u1 (v, w) > 0 =P cp(v, w) 2 0.
Action: replace p(v) by min(,,u)EE, (p(w) + c(v, w) + c).

Figure 5: The flow and price update operations.

to, thereby decreasing e1 (v) and f(w, v) by b and increasing e1 (w) and f(v, w) by b. The

push is saturating if u1 (v, w) = 0 after the push and nonsaturating otherwise.

A relabel operation applies to an active vertex v that has no exiting residual arcs with

negative reduced cost. It consists of increasing p(v) to the highest value allowed by the

c-optimality constraints, namely min(,,)EEf{c(v, W) + p(t) + C}. (If such a minimum is

taken over the empty set, the problem is infeasible.)

The following lemmas, which generalize corresponding results of [4,29], give important

properties of the update operations.

Lemma 5.1 If the problem is feasible, a pseudoflow f is c-optimal with respect to a price

function p, and v is an active vertex, then either a push is applicable to some arc (v, w) or

a relabeling is applicable to v.

Proof: Obvious. I

Remark: If the problem is infeasible and we begin with any pseudoflow, then during the first

iteration of refine there will be a vertex v with positive excess and no outgoing residual arcs.

We can use this fact to detect infeasibility (instead of using a maximum flow subroutine as

described in Section 4.1).

Lemma 5.2 A push preserves the c-optimality of a pseudoflow.

Proof: Obvious. I

Lemma 5.3 Suppose f is an c-optimal pseudoflow with respect to a price function p and

a relabeling is applied to a vertex v. Then the price of v increases by at least c and the

pseudoflow f is e-optimal with respect to the new price function p'.

19

'Q 1A 1" 1



C, V'QU(,W)

Figure 6: Operation puslaI wo) is applicable if e1(v) > 0 and (v, wo) is in the shaded rectangle
(including the heavy curve). If el(v) > 0 but for all wo push does not apply to (v, wo), then
relabel applies to v. Increasing the price of t' corresponds to shifting the kilter diagram down.
The absence of residual arcs in the shaded rectangle guarantees that the price of v increases by
at least C.

Proof: Before the relabeling, c,,(v, wo)>? 0 for all (,u, wo) E Ef , i.e. cp(v, w) + p(w) ! p(v)

for all (v, to) E E1 . Thus p9(v) = minl(,w)eE, {c(v, wo) + p(to) + -E) 2! p(v) + c.

To prove the second part of the lemma, observe that the only residual arcs whose reduced

costs are affected by the relabeling are those of the form (v, to) or (wo, v). Any arc of the form

(wo, v) has its reduced cost increased by the relabeling, preserving its C-optimality constraint.

Consider a residual arc (v, to). By the definition of p', p'I(v) :5 c(v, to) + p(to) + C. Thus

cpi(v, to) = c(v, wo) - p'(v) + p(w) : -t, which means that (v, u) satisfies its C-optimality

constraint.3

We can now establish the correctness of the refine subroutine, and hence of the entire

algorithm.

20p

'V *' ~'DO(



Theorem 5.4 If refine terminates, the pseudoflow f it returns is an c-optimal circulation.

Proof: The initial pseudoflow is c-optimal. The update operations maintain c-optimality

by Lemmas 5.2 and 5.3. By Lemma 5.1, refine can terminate only if there are no active

vertices, which, as noted in Section 2, implies that f is a circulation. I

Remark: One can obtain a variant of the refine subroutine by choosing a constant 7 such

that 0 < -y :- c, redefining push to be applicable when v is active, uj(v, w) > 0, and

cp(v, w) < -7/, and redefining relabel to be applicable when v is active and u/(v, w) > 0

implies c,(v, w) _ -y. The bounds we derive on the original version of refine hold for this

variant, with different constant factors depending on 7 (see [26]). We have been unable to

obtain any asymptotic improvements by choosing a value of 7 other than zero.

Next we analyze the number of update operations that can take place during an ex-

ecution of the generic implementation of refine. We begin with a few definitions. For a

pseudoflow f and a price function p, we call an arc (v, w) admissible if uj (v, w) > 0 and

cp(v, w) < 0. Note that a push operation is applicable to an arc (v, w) if and only if v is

active and (v, w) is admissible. The admissible graph is the graph GA = (V, EA) such that

EA is the set of admissible arcs.

As refine executes, the admissible graph changes. An important invariant is that the

admissible graph remains acyclic, as was observed by Bertsekas [4] for the case when costs

are integers and e < 1/n. To prove this fact for arbitrary real costs and arbitrary c, we need

the following lemma.

Lemma 5.5 Immediately after a relabeling is applied to a vertex v, no admissible arcs enter

Proof: Let (u, v) be a residual arc. Before the relabeling, cp(u, v) ?: -e by c-optimality. By

Lemma 5.3, the relabeling increases p(v), and hence %(u, v), by at least e. Thus c(u, v) >_ 0

after the relabeling. I

Corollary 5.6 Throughout the running of refine, the admissible graph is acyclic.

Proof: Initially the admissible graph contains no arcs and is thus acycic. Pushes obviously

preserve acyclicity. Lemma 5.5 implies that relabelings also preserve acyclicity. I

Next we derive a crucial lemma.

21

K A.t a011S ' UM OOM



Lemma 5.7 Let f be a pseudofow and f' a circulation. For any vertex v with e1 (v) > 0,

there iS VertceX with ef(W) < 0 and a sequence of distinct vertices v = v,vI,. .. ,vI-. 1 ,v =

w such that (vi, , +s) E Ef and (vi+1,vi) E Ef, forO < i < 1.

Proof: Let v be a vertex with ej(v) > 0. Define G+ = (V, E+), where E+ = {(x, y)If'(x, y) >

f(x, y)}, and define G- = (V, E-), where E- = {(x, y)lf(x, y) > f'(x, y)}. Then E+ g Ef,

since (z, V) E E+ implies f(z, y) < f'(x, Y) _< u(z, y). Similarly E- C Ef,. Furthermore

(x, y) E E+ if and only if (y, z) E E_ by antisymmetry. Thus to prove the lemma it suffices

to show the existence in G+ of a simple path v = vo, v, ... , vi with ef(vj) < 0.

Let S be the set of all vertices reachable from v in G and let 3 = V - S. (Set 39 may be

empty.) For every vertex pair (z, y) E S x 3, f(z, y) 2_ f'(z, y), for otherwise y E S. We

have

0= '(xY)e(sx-)nE f'(x, y) since f' is a circulation

< (XY)e(Sx)nE f(x, y) holds term-by-term

= -(x,y)E(Sx3)nE f(x, Y) + E(,Y)E(SxS)nE f(x, Y) by antisymmetry

= X(z,,)e(sxv)nE f(-, W) by definition of 3]

- 'E- $ e (x) by antisymmetry.

But v E S. Since ey(v) > 0, some vertex weS must have ey(w) < 0. I

Using Lemma 5.7 we can bound the amount by which a vertex price can increase during

an invocation of refine. The next lemma is similar to the lemma of Bland and Jensen [7]

that bounds the number of maximum flow computations in a scaling step of their algorithm.

Lemma 5.8 The price of any vertex v increases by at most 3nc during an execution of

refine.

Proof: Let f2, and p2 be the circulation and price functions on entry to refine. Suppose

a relabeling causes the price of a vertex v to increase. Let f be the pseudoflow and p the

price function just after the relabeling. Then e 1(v) > 0. Let v = vo, vl,...,vz = w with

et(w) < 0 be the vertex sequence satisfying Lemma 5.7 for f and f' = f2,.

The c-optimality of f implies

i-1 1-1
- l< E cp(vi, vi+) = p(?t,) - p(I') + E C(', ?".+ 1) (8)

i=0 i=0

22

- ! .1



The 2e-optimality of f2, implies
I-i I-I

- 21c < E Cp, ,(Vi+l, v,) = P,(V) - P2c(W) + c(vi+l, vi) (9)
i=O i=0

But = c(v 1, v+ ) =- 4i0 c(vi+,, vi) by cost antisymmetry. Furthermore p(w) =

P2U(w) since a vertex with negative excess has the same price as long as its excess remains

negative. Add;-, inequalities (8) and (9) and rearranging terms thus gives

p(v) < p2,(v) + 31c < p2(v) + 3ne.

I

Now we count relabelings.

Lemma 5.9 The number of relabelings during an execution of refine is at most 3n(n - 1).

Proof: Immediate from Lemmas 5.3 and 5.8. (At least one vertex is never relabeled; namely,

the last remaining one with negative excess.) I

To count pushes, we amortize the saturating pulses over the relabelings and the nonsat-

urating pushes over the relabelings and the saturating pushes.

Lemma 5.10 The number of saturating pushes during one execution of refine is at most

3nm.

Proof: For an arc (v, w), consider the saturating pushes along this arc. Before the first such

push can occur, vertex v must be relabeled. After such a push occurs, v must be relabeled

before another such push can occur. But v is relabeled at most 3n times. Summing over

all arcs gives the desired bound. I

The bound in the next lemma and its proof are due to Ronald Rivest. (Our original

bound was 0(n 4 ).)

Lemma 5.11 The number of nonsaturating pushes during one execution of refine is at

most 3n 2 (m + n).

23



Proof: For each vertex v, let f(v) be the number of vertices reachable from v in the current

admissible, graph GA. Let $ = 0 if there are no active vertices, 1 = F{$(v)v is active}

otherwise. Throughout the running of refine, $ > 0. Initially 4 < n, since GA has no arcs.

Consider the effect on # of update operations. A nonsaturating push decreases 0 by at

least one, since by Corollary 5.6, GA. is always acyclic. A saturating push can increase 4t

by at most n, since. at most one inactive vertex becomes active. If a vertex v is relabeled,

* also can increase by at most n, since by Lemma 5.5 9(w) for w $ v can only decrease.

The total number of nensaturating pushes is thus bounded by the initial value of -0 plus the

total increase in # throughout the algorithm, i.e. by n + 3n 2 (n - 1) + 3n 2 m < 3n 2(m + n).

I

6 Efficient Sequential Implementation

The running time of refne depends upon the order in which basic operations are applied

and on the details of the implementation, but any reasoikable implementation will run in

polynomial time. As a first step toward obtaining an efficient sequential implementation, we

develop an implementation that runs in O(n 2m) time. Then we improve the implementation

to obtain an O(n 3 ) time bound.

6.1 A Generic Implementation

To describe a straightforward implementation of the generic algorithm, we need some data

structures to represent the network and the pseudoflow. We associate a positive direction

with each edge f ,tv}, and we store with each such edge the four values u(v, w), u(w,v),

f(v, w), and c(v, w). Each vertex v has a list of the incident edges {v, w}, in fixed but

arbitrary order. (Thus an edge {v, w} appears in exactly two edge lists, the one for v and

the one for w.) For each vertex v we maintain the excess ej(v) and a current edge {v, w};

the corresponding current arc (v, w) is the current candidate for a push out of v. Initially

the current edge is the first edge on the edge list of v.

The generic implementation of the while loop in refine consists of repeating the following ip

steps until there are no active vertices: select an active vertex v; apply to v the push/relabel

operation. The push/relabel operation is described in Figure 7. Such an operation applies

to an active vertex v with current edge {v, w}. It pushes flow through the arc (v, w) if this

24

S



push/relabel v).
Applicability: v is active.
Action: let Iv, w} be the current edge of v.

if uj(v, to) > 0 and c,(v, to) < 0 then push(v, w)
else

if {v, tolis not the last edge on the edge list of v then
replace {v, w} as the current edge of v
by the next edge on the list

else begin
make the first edge on the edge list of v the current edge;
rel abc(ti);

end.

Figure 7: The push/relabel operation.

arc is eligible. If not, it replaces the current edge of v by the next edge on the edge list of

v unless the current edge is the last edge on the list, in which case it makes the first edge

on the list the current one and relabels v.

Lemma 6.1 The push/relabel procedure uses the price update operation only when this

operation is applicable.

Proof: Suppose a vertex v is relabeled. Just before the relabeling, for each arc (v, w),

either cp(v, to) 2_ 0 or uf(v, to) = 0, because p(v) has not changed since {v, w) was most

recently the current edge of v, p(w) never decreases, and uf(v, to) cannot increase unless

c,(w,v) < 0, i.e. cp(v, w) 20 0. 1

The generic implementation needs one additional data structure, a set S containing all

active vertices. Initially S contains all vertices whose excess becomes positive during the

initialization step of refine. Updating S takes only 0(1) time per push/relabel operation.

(Such an operation requires possibly deleting one vertex from S and adding one vertex to

S.)

Theorem 6.2 The generic implementation of refine runs in O(n2 m) time, giving an

0(nlm min{log(nC), m log n}) time bound for computing a minimum-cost circulation.

Proof: The total number of passes through each edge list is O(n) by Lemmas 5.3 and 5.8.

The desired bound follows from Lemmas 5.9, 5.10, and 5.11. 3

25

i11. 1 1-v



Appliesbifty: vis active.
Action: apply pask/relbel operations to v until v is relabeled

or becomes inactive.

Figure 8: The discharge operation.

6.2 The Wave Implementation

To obtain a faster version of refine, we begin by somewhat restricting the freedom of choice

in push/relabel operations. The restricted algorithm consists of repeatedly selecting an

active vertex and applying to it the discharge operation, described in Figure 8. A discharge

operation applies push/relabel operations to an active vertex until it is relabeled or becomes

inactive, i.e. its excess drops to zero.

Remark: We can actually allow a certain amount of flexibility in the discharge operation.

Specifically, after a vertex v is relabeled, additional push/relabel operations can optionally

be applied to v, as long as v remains active. The bounds we shall derive, although stated

for the original version of discharge, are valid for this more general version as well.

There remains the issue of the order in which to consider active vertices. The first-in

first-out (FIFO) algorithm consists of maintaining the set of active vertices as a queue,

repeatedly discharging the front vertex on the queue and adding newly active vertices to

the rear of the queue. We might expect the first-in, first-out algorithm to be very efficient,

since the analogous algorithm for the maximum flow problem requires 0(n 2 ) passes over the

queue and runs in 0(n 3 ) time. Unfortunately, the first-in, first-out implementation of refine

makes 0(n 3 ) passes over the queue in the worst case, and we are unable to establish a bound

on the total running time better than the 0(n 2 m) bound of the generic implementation.

The following lemma establishes an 0(n 3 ) bound on queue passes; the appendix describes

a class of examples that take 01(n 3 ) passes.

We define passes over the queue as follows. Pass one consists of the discharge operations

applied to vertices added to the queue during the initialization of the pseudoflow. For i > 2,

pass i consists of the discharge operations applied to vertices added to the queue during

pass i - 1.

Lemma 6.3 During the ezecution of the first-in, first-out implementation of refine, thcr

are 0(n 3 ) passes over the queue.

26

-a



Proof: As in the proof of Lemma 5.11, let #(v), for each vertex v, be the number of

vertices reachable from v in the current admissible graph GA. Let 4 = 0 if there are no

active vertices, 4 = max{4(v)Iv is active) otherwise. Consider the effect on 4 of a pass
over the queue. If no relabelings take place during the pass, 4. drops by at least one, since

the excess pushed from any vertex is pushed to vertices with smaller values of 0. If one
or more relabelings take place during the pass, 4 can increase by at most n, since it is
always the case that 0 < 1 < n. The total number of passes is thus at most the number

of relabelings plus the number of passes in which 0 decreases. The latter is at most n (the

maximum possible initial value of 4) plus 3n2(n - 1) (i.e. n times the maximum number of

relabelings). This gives a bound of at most 3n(n - 1) + n + 3n2(n - 1) < 3n3 on the total

number of passes. I

Although the first-in, first-out approach fails to improve the efficiency of refine, a similar

approach, proposed by Charles Leiserson (private communication) and independently by

Bertsekas (4] (without some implementation details and the use of scaling), does produce

a faster algorithm. We call this method the wave method since it resembles the wave

algorithm for computing maximum network flows (53]. The wave method is a generalization

of a version of our maximum flow algorithm that pushes the flow from an active vertex with

the biggest distance label (291; in the wave method, the vertices are processed in topological

order with respect to the admissible graph.

The wave method, described in Figure 9, maintains a list L of all the vertices of G, in
topological order with respect to the current admissible graph GA, i.e. if (v, w) is an arc of

GA, v appears before w in L. The method also maintains a current vertez in L, which is the

next candidate for discharging. Initially L contains the vertices of G in any order, and the
current vertex is the first one on L. The method repeatedly scans L, applying the discharge

operation to each active vertex encountered. When a discharge causes a relabeling to take

place, the affected vertex v is moved to the front of L, but the next vertex examined is the
one after the old position of v. The method terminates when there are no active vertices.

The key to analyzing the wave method is to observe that, because of the topological
ordering of L, the method terminates immediately after a pass through L during which no

relabelings occur.

Lemma 6.4 The wave method terminates after O(n 2 ) passex through L.

Proof: Lemma 5.5 implies that the wave method maintains the invariant that L is topolog-

27



pyocedure wae,
let L be a list of all vertices;
let v be the first vertex on L;
while 3 an active vertex do begin

if v is active then begin
disck. re(u);
if the dischere has relabeled v then

move v to the front of L;
end;
replace v by the vertex after the old position of v on L,
or by the first vertex on L if v was previously last on L;

end;
end.

Figure 9: The wave method.

ically ordered. If a pass over L occurs during which no relabelings occur, then the ordering

of L does not change during the pass and every vertex is able to reduce its excess to zero.

Thus no active vertices exist after the pass. I

Theorem 6.5 The wave implementation of refine runs in O(n 3 ) time, giving an

O(n3 min{log(nC), m log n}) bound for finding a minimum-cost circulation.

Proof: Lemma 6.4 implies that there are O(n 3 ) nonsaturating pushes (one per vertex per

pass) during an execution of refine. By Lemma 5.10 there are O(nm) saturating pushes.

The time taken by refine is O(n 3 ) plus 0(1) per push, for a total of 0(n 3 ). 3

The following order of processing vertices also leads to an 0(n 3 ) running time for refine:

apply a discharge operation to the first active vertex on L, move this vertex to the front of

L if it has been relabeled, and repeat until there are no active vertices. The only difference

from the version of the wave subroutine described on Figure 9 is that when a vertex v is

relabeled and moved to the beginning of L, the processing continues from the beginning of

L (i.e. from the current position of v), rather than from the old position of v. We call this

the first-active version of refine.

7 Use of Dynamic Trees

Through the use of sophisticated data structures, we can further reduce the running time

of refine on sparse graphs. We shall describe how to implement the first-active version of

28

IN



find-root(v): Find and return the root of the tree containing vertex v.
find-size(v): Find and return the number of vertices in the tree containing vertex v.

find-valhe(v): Compute and return g(v).

find-min(v): Find and return the ancestor w of v of minimum value g(w). In case of a
tie, choose the vertex u; closest to the root.

change.-valve(v, z): Add real number z to g(w) for each ancestor w of v. (We adopt the
convention that co + (-oo) = 0.)

link(v, to): Combine the trees containing vertices v and w by making w the parent
of v. This operation does nothing if v and w are in the same tree or if v
is not a tree root.

cat(v): Break the tree containing v into two trees by deleting the arc from v to
its parent. This operation does nothing if v is a tree root.

Figure 10: Dynamic tree operations.

refine, described at the end of Section 6.2, so that it runs in O(nmlog(n2 /m)) time.

There are two bottlenecks in the implementation of this algorithm. First, we need a way

to maintain L so that the first active vertex is easy to find. For this purpose we use a data

structure based on finger search trees [39,54]. Second, we need a way to maintain the set

of current edges so that the time per nonsaturating push is o(1). For this purpose we use

the dynamic tree data structure of Sleator and Tarjan [48,49]. The O(nmlog(n2 /m)) time

bound of the resulting version of refine matches that of the dynamic tree implementation

of our maximum flow algorithm [29], and its derivation is similar, except for the additional

complication of maintaining L.

7.1 The Tree Method

We shall postpone to Section 7.3 the issue of maintaining L and focus on the use of dynamic

trees. The dynamic tree data structure allows the maintenance of a collection of vertex-

disjoint rooted trees, each vertex v of which has an associated value g(v), which is either

a real number or oc. The structure supports the seven tree operations described in Figure

10. The total time for I tree operations, starting with a collection of single-vertex trees, is

O(Ilog k), where k is an upper bound on the maximum number of vertices in a tree. (The

implementation of dynamic trees discussed in [48,49] does not support find-size operations,

but it is easily modified to do so, as discussed in [29].)

In our application, if paren (v) is the parent of a vertex v in a dynamic tree, then

{v, parent(v)) is the current arc of v and (v, parent(v)) is admissible, i.e. u1 (v, parent(v)) > 0

29

11111C. -



Applicability: in active.
Acti": whe find-rvo(v) i v and e(v) > 0 do begin

send 6 *.- minje(v),fad-valae(find-mix(v))} units of flow
along the tree path from v by performing change-vaiue(v, -6);

while flad-v&eisd-mis(v)) = 0 do begin

perform cag(i) followed by chaage-value(i, o);
end;

end.

Figure 11: The Send operation.

and c(*7, parengt*)) < 0. Not all admissible current arcs are tree arcs, however. The value

g(v) of a vertex vi in its dynamic tree is uf(v, parent(v)) if v has a parent and oo if v is a tree

root. Initially, each vertex is in a one-vertex dynamic tree and has value oo. We limit the

maximum tree size to k, where k is a parameter to be chosen later, satisfying 2 _ k < n.

The dynamic tree implementation of refine, which we shall call the tree method, uses

tree operations to send flow along an entire tree path at a time, thereby avoiding explicitly

dealing with nonsaturating pushes. The heart of the algorithm is the procedure send(v)

defined in Figure 11, which pushes excess from a nonroot vertex v to the root of its tree,

cuts arcs saturated by the push, and repeats these steps until e(v) = 0 or v is a tree root.

Instead of the push/relabel operation, the tree method uses the tree push/relabel oper-

ation, defined in Figure 12. Such an operation applies to an active vertex v that is the

root of a dynamic tree. There are two main cases. The first case occurs if the current edge

Iv, w} of v is such that (v, w) is admissible. If the trees containing v and w together have

at most k vertices, these trees are linked by making w the parent of v, and then a send(w)

is done. If these trees together contain more than k vertices, a push(v, w) is done followed

by a send(w). The second case occurs if (v, w) is not admissible. In this case the current

edge of v is updated and v is relabeled if the previous current edge was the last on the edge

list of v. If v is relabeled, all tree arcs entering v are cut, thereby preserving the invariant

that all tree arcs are admissible.

The tree method uses the modified form of discharge shown in Figure 13, called tree- I
discharge, which is the same as discharge except that push-relabel operations are replaced

by tree-push/relabel operations, which are applied to an active vertex v until it becomes

inactive.

30p



free-pvsh/relabe~v).
Applicability: v is an active tree root.
Action: let {v, w) be the current edge of v;

(1) if (v, w) is admissible then
(la) if Jind-size(v) + find-size(w) :_ k then begin

[make w the parent of v]
change-val e(v, -oo);
change-valve(v, rf (v, w));
link(v, w);
[push excess from v to w]
send(v);

end
(1b) else [find-,izc(v) + Jind-s ze(w) > k] begin

pu h(v, W);
send(w);

end
(2) else [(v, w) is not admissible]

(2a) if {v, w} is not the last edge on the edge list of v then
replace {v, w} as the current edge by the next edge on the list

(2b) else [{v, w) is the last edge on the edge list of v] begin
make the first edge on the list the current one;
for every child u of v do begin

cal(u);
clange.value(u, oo);

end;
relabe( v);

end.

Figure 12: The tree-push/relabel operation.

The tree method itself is defined in Figure 14. It differs from the wave method in two

respects: active vertices are processed in a different order, and discharge operations are

replaced by tree-discharge operations.

It is important to realize that the tree method stores values of the pseudoflow f in two

different ways. If {v, w) is an edge that is not a tree edge, then f(v, w) is stored explicitly,

with {v, to). If {v, w) is a tree edge, with tw the parent of v, then u1 (v, w) is stored implicitly

in the dynamic tree data structure as g(v). Whenever a tree edge {v, w} is cut, g(v) must

tree-discharge(v ).

Applicability: v is an active tree root.
Action: apply tree-push/relabei operations to v until v becomes inactive.;

Figure 13: The tree-discharge operation.

31



JU

procedure tree;,
let Lbe a list of all verties;
while 3 an active vertex do begin

let P be the first active vertex on L;
tree-4itckarge(v);
i the dischare has relabeled v then

move v to the front of L;
end

end.

Figure 14: The tree method.

be computed and f(v, w) set to its correct current value. In addition, when the algorithm

terminates, flow values must be computed for all edges remaining in dynamic trees.

Three observations imply the correctness of the tree method. First, the algorithm main-

tains the invariant that every tree arc is admissible. Second, the acyclicity of the admissible

graph implies that the algorithm never attempts to link two vertices in the same dynamic

tree. Third, a vertex v that is not a tree root can be active only in the middle of case (1)

of a tree-push/reisbel operation. To see this, note that only in this case does the algorithm

create an active nouroot vertex, and this event is followed by a send operation, after which

all the excess is on one or more roots.

Remark: If we let the maximum tree size k equal n and generalize the tree method to apply

discharge operations to active vertices in any order, we obtain an O(nm log n) implementa-

tion of refine. See 126,29] for details of the analysis. This method does not need an elaborate

data structure to select active vertices for processing, but its time bound is asymptotically

worse than that of the tree method on non-sparse graphs.

Remark: The version of the tree method that processes active vertices in the same order as

the wave method, i.e. by making passes through the list L, also runs in O(nmlog(n2 /m))

time, but it is slightly more complicated to implement.

7.2 Analysis of the Tree Method

In order to analyze the tree method, we introduce a bit of termiiiology. NVe say a vertex is

discharged when a discharge operation is applied to it. We say a vertex is activated when it

becomes active while it is a root vertex or it becomes a tree root while it ik active. A vertex
can only be activated during the initialization or in cases (la) and (Ib) of tree-push/relnbdl.

32



In case (la), each push of flow from v during the operation send (v) can activate a vertex.

In case (1b), the operation push (v, w) can activate w if w is a root. If w is not a root, each

push of flow from w during the operation send (w) can activate a vertex; and, in addition,

the last cut of the send, if it cuts the current arc leaving w, can activate w.

Lemma 7.1 Between relabelings, the order of L does not change, and each vertex is dis-

charged at most once.

Proof: The only time the order of L is changed is when a vertex is relabeled. When a

vertex is discharged, its excess is moved to vertices after it on L. The lemma follows. I

Lemma 7.2 The maximum size of a dynamic tree is k. The number of dynamic tree

operations is O(nm) plus 0(1) per vertex activation.

Proof: The test in case (la) of tree-push/relabel guarantees that the size of a dynamic tree

can never exceed k. Each tree-push/relabel operation does 0(1) tree operations plus 0(1)

tree operations per cut operation (in invocations of send and in case (2b)). The total number

of cut operations is at most the number of link operations, which is O(nm) by Lemmas 5.3

and 5.8. (An operation link(v, w) can only occur once between relabelings of v.) Thus the

number of tree operations is O(nm) plus 0(1) per tree-push/relabel. During an operation

discharge(v), every tree-push/relabel except the last does either a link, a saturating push, or

a relabel, or changes the current edge of v. Thus there are O(nm) tree operations plus 0(1)

per discharge. The number of discharge operations equals the number of vertex activations.

The next lemma, analogous to Lemma 5.2 of [29], is the heart of the analysis.

Lemma 7.3 The number of vertex activations is O(nm + n3 /k).

Proof: There are at most n - 1 activations during the initialization. All others occur in

cases (la) and (1b) of tree-push/relabel. In either case the number of activations is at most

one more than the number of cuts done during the invocation of send in the case. Each

occurrence of (la) results in a link. It follows that the number of activations is O(nm) plus

one per occurrence of (1b) that results in a nonsaturating push, an activation, and no cuts.

Let us call such an occurrence of (1b) a critical occurrence.

33

EMAML 'jnjr~n fl~jjjn6



For anmy vertex u, let T. be the dynamic tree containing u and let ITUI be the number

of vertices it contains. We say T. is small if IT1 :_ k/2 and large otherwise. At any time

there are at most 2n/k large trees.

We shall charge each critical occurrence of (1b) to either a link, a cut, or a relabeling.

We charge 0(1) occurreces to each link or cut and O(n/k) to each relabeling. This gives a

bound of O(nm + n3 /k) on the total number of critical occurrences, and hence on the total

number of activations. For ease in stating the argument, we shall assume that a "phantom"

relabeling occurs at initialization.

Consider a critical occurrence (1b), in which a nonsaturating push from a vertex v to a

•.tertex w occurs, followed by a send(w). Since this occurrence is critical, T,, does not change

as a result of the send and the root of T. is the only vertex activated by the occurrence. The

condition on entry to case (1b) guarantees that T, or T.. is large, giving us two possibilities

to consider.

Suppose T. is large. Vertex v is the root of T,,. The critical occurrence of (1b) removes

all the excess from v, which means that such an occurrence can apply to a vertex v only

once between relabelings. If T. has changed since the last preceding relabeling, charge the

critical occurrence to the link or cut that changed T,, most recently before the occurrence.

The total number of such charges is at most one per link and two per cut. (A link forms one

new tree; a cut, two.) If T. has not changed since the last preceding relabeling, charge the

occurrence to this relabeling. Since at any time, including just after a relabeling, there are

at most 2n/k large trees, the total number of such charges is at most 2n/k per relabeling.

Suppose on the other hand that T,,, is large. The critical occurrence activates the root
of T,,,, say r. A given vertex r can be activated at most once between relabelings. If T.. has

changed since the last preceding relabeling, charge the occurrence to the link or cut that

most recently changed T,, before the occurrence. The number of such charges is at most
one per link and two per cut. If T has not changed, charge the occurrence to the last

preceding relabeling. The number of such charges is at most 2n/k per relabeling. I

Lemma 7.4 The running time of the tree method, not counting time spent maintaining L

and finding vertices to discharge, is O((nm + n3 /k) logk).

Proof: By Lemmas 7.2 and 7.3, the total time spent doing dynamic tree operations is

O((nm + n3/k)logk). In addition, O(nm) time is spent in initialization, relabelingb, and

34



maintenance of current edges. I

7.3 Representation of the Vertex List

The task remaining is to select a. representation for the vertex list L and analyze the time

needed to maintain it. To facilitate the finding of active vertices, we split L into sublists by

dividing L just before each active vertex. Each sublist consists of a first vertex, called the

head of the sublist, and zero or more inactive vertices. The head of the first sublist can be

active or inactive; the second and subsequent sublists all have active heads. We represent

L by a doubly linked list of these sublists.

Consider the operations on L needed in the tree method. Finding the first active vertex

on L requires examination of the heads of the first two sublists and selection of the first of

these that is active. After a vertex v is relabeled, it must be moved to the front of L. We

can do this as follows. When v is relabeled, it is active. If v is not already on the front of L,

we delete it from its current sublist (of which it is the head), concatenate what remains of

this sublist with the preceding sublist, and either insert v into the front of the first sublist

if its head is inactive, or make v into a one-element sublist on the front of L, if the head of

the old first sublist is active.

List L must also be updated when vertices are activated and discharged. (Recall from

Section 7.2 that a vertex is activated when it is a root and becomes active or when it is
active and becomes a root.) We can do this as follows. When a vertex v is activated, we split

the sublist containing v into two sublists, with v the head of the second one. Immediately

after a vertex is discharged, we concatenate the sublist of which it is the head with the

preceding sublist, if any.

In summary, we need the following four operations on sublists:

1. Initialize a sublist containing a given sequence of vertices.

2. Access the head of a given sublist.

3. Split the sublist containing a given vertex just before that vertex and return the two

resulting sublists.

4. Concatenate two sublists and return the resulting sublist.

Deleting the head of a sublist is a special case of splitting; adding a new head to the

front of a sublist is a special case of concatenation.

35



|, . .. I[..... f l _a p:. ., J ...S z ,. . ,.- ,-- i z t. 
- ' ' L -  

-
-  

-

We desire a sublist representation that achieves the following time bounds for the four

operations:

1. O(llogL) to initialize a sublist containing I vertices.

2. 0(1) to access the head of a sublist.

3. 0(1) to split a sublist just after a given vertex.

4. 0(1 +logmin{li, 12}) to concatenate two sublists containing 11 aitd 12 vertices, respec-

tively.

It suffices that these bounds be amortized, i.e. that the total time for an arbitrary

sequence of operations starting with no sublists be no greater than the sum oi the time

bounds of the operations. 2 Let us call a sublist representation suitable if it achieves the

desired bounds in the amortized sense.

Lemma 7.5 With a suitable sublist representation, the total time needed to maintain L and

to find vertices for discharging is O((nm + n3/k) log k), where k is the maximum dynamic

tree size.

Proof: The time to initialize the sublists of which L is comprised is O(n log n). The time

to find the first active vertex on L is 0(1); by Lemma 7.3, this operation occurs O((nm +

n3 /k) logk) times. The number of splitting operations is 0(1) per vertex activation and

0(l) per relabeling, for a total time bound of 0((nm + n3/k) log k). There are at most two

concatenations per relabeling. One takes 0(1) time; the other, O(logn). The total time for

concatenations accompanying relabelings is thus 0(n 2 log n).

It remains to bound the time for concatenations that occur between relabelings as a

result of discharge operations. We shall show that the total concatenation time during an

interval in which no relabelings occur is 0((n/k) log k) plus O(log k) per vertex activation,

from which an overall 0((nm + n3/k)logk) bound on concatenation time follows.

Consider a time interval I during which no relabelings occur. There is one concatenation
per discharge operation during I. An operation discharge(v) results in the concatenation of

the sublist containing v, say S(v), with the preceding sublist. Observe that during interval

I successively concatenated sublists S(v), S(w),... are vertex-disjoint. Call a sublist S(v)
2The second author's survey paper [511 contains a thorough discussion of amortization.

36



small if it contains at most k vertices and large otherwise. The time for concatenating small

sublists is 0(log k) per concatenation, i.e. O(log k) per vertex activation. Let v1 , v2 ,..., V

be the vertices for which S(vi), S(v2),..., S(vL) are large when concatenated during I. Then

I < n/k, and the total time for concatenating these sublists is

I

O(Elog(1 + IS(v,)l)) _< flog(1 + n/I) < (n/k)log(1 + k).

(The worst case occurs when all sublists are of the same size.) Thus the total time

for concatenating large sublists, summed over all intervals containing no relabelings, is

0((n3/k) log k). I

Theorem 7.6 With a suitable sublist representation, the tree method runs in

0(nm log(n2/m)) time, giving an O(nm log(n2 /m) min{log(nC)), m log n}) bound for find-

ing a minimum-cost circulation.

Proof: Choose k = 2n 2/m and apply Lemmas 7.4 and 7.5. |

A suitable way to represent sublists is to use finger search trees [39,54]. Such trees give

the following amortized time bounds for the four sublist operations (see [54]):

1. O(llog l) to initialize a sublist containing I vertices.

2. 0(1) to access the head of a sublist.

3. 0(1 +logmin{li, 12)) to split a sublist into sublists of sizes 11 and 12, or to concatenate

two sublists of sizes 11 and 12.

These are not quite the desired bounds. In particular, we want each splitting operation

to take 0(1) time rather than 0(1 + log min{li, 12 ). Fortunately we can charge the split-

ting time to concatenations, thereby reducing the amortized time per split to 0(1) while

increasing the amortized time per concatenation by only a constant factor.

The argument uses the idea of a potential function [51]. We define the potential of a

sublist of size 1 to be -c(1 + log 2 1), where c is the constant in the amortized time bound

for splitting. We define the total potential of a collection of sublists to be the sum of

their individual potentials. We define the nominal time of a sublist operation to be its

37



amortized time bound plus the net increase in total potential it causes. For any sequence

of sublist operations, the sum of the nominal times equals the sum of the amortized time

bounds plus the final total potential minus the initial total potential. In our application,

the initial total potential is zero (there are no sublists initially) and the final potential is at

least -cn log n. Thus for any sequence of sublist operations the sum of the amortized time

bounds is Q(nlogn) plus the sum of the nominal times. The nominal time to initialize a

sublist of I items is 0(l log n). (The initial potential is zero; the final potential is negative.)

The nominal time to access the head of a sublist is 0(1). (There is no change in potential.)

The nominal time for splitting is 0(1). (When sublists of sizes 11 and 12 are formed by a split,

the potential change is (-1 - log2 1i - 1 - log 2 12 + 1 + log(1 1 + 12)) _< -clog min{l,1 2}.)

The nominal time for a concatenation is at most a constant factor times its amortized
time bound. (When sublists of sizes 11 and 12 are concatenated, the potential change is

c(-1 - log(ll + 12) + 1 + logl 1 + 1 + logl2) :_ c(1 + logmin{li,1 2 }.)) Thus we have the

following result.

Lemma T.7 Finger search trees are a suitable representation of sublists.

8 Refinement Using Blocking Flows

It is natural to ask how much harder the minimum-cost circulation problem is than the

maximum flow problem. Based on the results of Sections 4-7, one might conjecture that the

minimum-cost circulation problem can be solved in 0(min{log(nC), m logn}) iterations of

a maximum flow subroutine. Although we are unable to prove this conjecture, we show in

this section that 0(n min{log(nC), m log n}) iterations of a blocking flow subroutine suffice

to compute a minimum-cost circulation. The maximum flow algorithm of Dinic [11], as

well as the many maximum flow algorithms based on his approach, e.g. [35,38,46,53], find

a maximum flow by solving 0(n) blocking flow problems. Thus our result shows that the

time to solve a minimum-cost circulation problem is only 0(min{log(nC), m log n}) times

greater than the time to find a maximum flow using Dinic's approach.

To describe our method we need some standard definitions. Let G = (V, E) be a directed

graph with a capacity function u and with two distinguished vertices, a source s and a sink

t. A pseudoflow on G is a flow if every vertex except s and t has zero excess. Observe that

if f is a flow, ej(t) = -e1 (s). The value of a flow f is e1 (t). A flow is maximum if ef(t)

is as large as possible. A flow f is blocking if any path from s to t in G contains at least

38

ib



one saturated arc, i.e. an arc (v, w) such that u1 (v, w) = 0. A maximum flow is blocking,

but not conversely. A directed graph is acyclic if it contains no cycles. It is layered if its

vertices can be assigned integer layers in such a way that layer (v) = layer (w) + 1 for every

arc (v, w). A layered graph is acyclic but not conversely.

The main step of our method is the computation of a blocking flow on an acyclic network.

Many of the known blocking flow algorithms are stated for layered networks, but they apply

to acyclic networks as well (e.g. [35,38,53]). The blocking flow algorithms of Galil [22] and

Shiloach and Vishkin [46] can be extended from layered to acyclic networks without affecting

their asymptotic time bounds (see [26]).

8.1 The Blocking Flow Method

We shall describe an implementation of refine that reduces e by a factor of two by computing

O(n) blocking flows. This method, called the blocking flow method, consists of refine as

described in Section 5 (Figure 4) with the original loop replaced as described in Figure 15.

The new loop repeatedly modifies the current pseudoflow until it is a circulation. To modify

the pseudoflow, the method first partitions the vertices of G into two sets S and 3, such

that S contains all vertices reachable in the current admissible graph GA from vertices of

positive excess. Vertices in S have their prices increased by e. Next, an auxiliary network N

is constructed by adding to GA a source s, a sink t, an arc (s, v) of capacity ej(v) for each

vertex v with ef (v) > 0, and an arc (v, t) of capacity -ej(v) for each vertex with ej(v) < 0.

An arc (v, w) E EA has capacity uf (v, w) in N. A blocking flow b on N is found. Finally,

the pseudoflow f is replaced by the pseudoflow f'(v, w) = f(v, w) + b(v, w) for (v, w) E E.

The correctness of the blocking flow method follows from the next lemma.

Lemma 8.1 The set S computed in the inner loop contains only vertices v with ej(v) 0.

At the beginning of an iteration of the loop, f is an c-optimal pseudoflow with respect to the

price function p. Increasing the prices of vertices in S preserves the E-optimality of f. The

admissible graph remains acyclic throughout the algorithm.

Proof: The proof is by induction on the number of iterations of the inner loop. At the

beginning of an iteration of the loop, there is no path in GA from a vertex v with positive

excess to a vertex w of negative excess; for the second and subsequent iterations this follows

from the addition to f of a blocking flow during the previous iteration. Increasing the

39

,,,. .I,



procedure refine(c, f, p);

t .- t/2;
V(v, w) E E do if c,(v, w) < 0 then f(v, w) u(v, w);

[lop]
while f is not a circulation do begin

S -- {v E Vi3u E V such that e1 > 0 and v is reachable from u in GA);
Vv ES, p(v) - pQ')+ q
let N be the network formed from GA by adding a source s, a sink t,

an arc (8,v) of capacity el(v) for each v E V with e!(v) > 0, and
an arc ( ,t) of capacity -eI(v) for each v E V with e1 (v) < 0;

find a blocking flow b on N;
V(", t) E EA, f(v, w) - f(v, w) + b(v, w);

end;
return(e, f, p);

end.

Figure 15: The blocking refine subroutine.

price of every vertex in S by c preserves the c-optimality of f, since before the increase

every residual arc (v, w) with yeS, wJ has ep(v, w) > 0. The only time new arcs become

admissible is as a result of such a price increase. This increase can add new admissible arcs

from S to 3 but will make all arcs from 3 to S non-admissible. Thus the admissible graph

remains acyclic. I

Remark: If we are given a price function p with respect to which some circulation is optimal,
then we can find an optimal circulation f by means of a single maximum flow computation.

The method resembles the blocking flow approach. We begin by constructing the pseudoflow

f that saturates all negative-cost arcs and is zero on all other arcs. Then we construct the

subgraph of the admissible graph containing all zero-cost arcs. To this graph, we add a

source a, a sink t, an arc (a, v) of capacity ej(v) for each vertex v with e1 (v) > 0, and an

arc (v, t) of capacity -ej(v) for each vertex v with el(v) < 0. Finally, we find a maximum

flow f' in this network and use f' to augment f. (The optimality of p implies that f' will

saturate all arcs leaving a and all arcs entering t.) I

8.2 Analysis of the Blocking Flow Method

The following lemma bounds the number of blocking flow computations. It is analogous

to the bound of Bland and Jensen 17J on the number of maximum flow computations in a

40

'4 'a'



scaling step of their algorithm.

Lemma 8.2 The number of iterations of the inner loop in the blocking flow implementation

of refine is at most 3n.

Proof: The inner loop never changes a vertex excess from nonnegative to negative or
from nonpositive to positive. Thus all vertices with negative excess never have their price

changed, and all vertices of positive excess have had their price increased by ic after i it-
erations of the inner loop. The same proof as that of Lemma 5.8 shows that no vertex of
positive excess can have a price change exceeding 3nE. Hence there are at most 3n iterations.

I

Theorem 8.3 The blocking flow implementation of refine runs in O(nB(n, m)) time, giving

an O(nB(n, m) min{log(nC), m log n}) bound for finding a minimum-cost circulation, where

B(n, m) is the time needed to find a blocking flow in an acyclic network with n vertices and
mn arcs.

Proof: Immediate from Lemma 8.2. I

Theorem 8.3 implies that the blocking flow approach yields implementations of refine

with running times of 0(n 3 ), 0(n5/ 3m2/3), and 0(nm log n), based on the known bounds for

computing a blocking flow in an acyclic network, namely O(n 2 ) [35,38,46,53], O(n 2 / 3
7n2/3)

[22], and 0(m log n) [47,48]. The algorithms of Shiloach and Vishkin [46] and Galil [22] must

be extended to handle acyclic networks instead of layered networks, but such extension does

not affect their asymptotic running times.

In the next section we shall develop an O(mlog(n2/m))-time blocking flow algorithm,

which in combination with Theorem 8.3 yields an O(nmlog(n2/m)rain{log(nC), m logn})

time bound for computing a minimum-cost circulation. This matches the bound obtained

in Section 7.

The blocking flow approach also yields efficient parallel and distributed minimum-cost
circulation algorithms. These use the Shiloach-Vishkin parallel blocking flow algorithm,

which runs in O(n log n) time using n processors and O(nm) memory [46]. Vishkin (private

communication, 1986) has reduced the memory requirement of the algorithm from the

published bound of O(nm) to O(n 2). Previous results known to us are as follows. The

Shiloach-Vishkin algorithm can be used in the cost-scaling methods of R6ck [45] and Bland

41

-w1



and Jensen [7] to yield an O(n 3 (log n) log(nC))-time n-processor parallel algorithm. The

blocking flow approach improves this bound by a factor of n. Bertsekas [4] has proposed

a "chaotic" algorithm for the minimum-cost circulation problem that converges in a finite

number of steps in a distributed model.

Theorem 8.4 The blocking flow approach yields a minimum-cost circulation algorithm

running in O(n 2(log n) min{log(nC), m log n}) time using n processors and O(n2) memory.

These bounds are valid for either the PRAM computation model [14] without concurrent

writing or the DRAM model 1371.

The same method gives good bounds in distributed models of parallel computation

[2,24]. In the statement of results below, A,, denotes the degree of vertex v; each vertex v

has a processor p, and communication links with all adjacent vertices.

Theorem 8.5 The blocking flow approach yields a minimum-cost circulation algorithm

for the synchronous distributed model running in 0(n2 min{log(nC), m log n)) time using

0(n 3 min{log(nC), m log n}) total messages and 0(nA,) memory per processor p". In the

asynchronous distributed model, the time increases to 0(n 2(log n) min{log(nC), m log n});

the bounds on message complexity and memory remain the same.

Proof: The bounds for the synchronous model follow from the observation that the Shiloach-

Vishkin blocking flow algorithm runs on the distributed model in 0(n 2 ) time using 0(n 3)

messages and O(nA,,) memory per processor. The bounds for the asynchronous model fol-

low using the synchronization protocol of Awerbuch [2], which increases the time bound by

a factor of O(log n). I

Remark: A disadvantage of the Shiloach-Vishkin algorithm is the greater than linear (i.e.

l(n2)) memory requirement. The generic refine method hal a parallel version that pro-

cesses all active vertices in parallel (see [26]). It uses only a linear amount of memory.

Unfortunately, the running time bound for this algorithm is worse than the running time
bound for the Shiloach-Vishkin algorithm. It is still possible, however, that a variation of
this algorithm runs in the same time as the Shiloach-Vishkin algorithm and uses a linear

amount of memory. See [261 for a discussion of implications of this conjecture. Although

the theoretical bound on the running time of the parallel version of the generic method is

no better than the time bound of the best sequential version, it is still possible that the

parallel version will perform well in practice.

42

t P,



8.3 Finding a Blocking Flow

In this section we propose a new sequential algorithm for finding a blocking flow in an

acyclic network. The algorithm combines ideas in the wave algorithm [53] with the data

structures discussed in Section 7. It runs in O(m log(n 2/m)) time. Since the new algorithm

closely resembles the dynanic tree implementation of refine, we shall merely sketch the

ideas and omit the analysis.

Let G = (V, E) be an acyclic graph with source 8, sink t, and capacity function u. The

algorithm maintains a preflow f on G, initially such that f(s, v) = u(s, v) for v E V and

f(v, w) = 0 for v, w E V - {s. Each vertex v is in one of two states, blocked or unblocked.

An unblocked vertex can become blocked, but not conversely. Initially all vertices are

unblocked. A vertex v V {s,t} is active if e1 (v) > 0.

The algorithm makes use of the three operations push, pull, and block. A push operation

applies to an arc (v, w) such that v is active, v and to are unblocked, and uj(v, w) > 0. It

consists of increasing f(v, to) by min{ej(v), u1 (v, t)}. A pull operation applies to an arc

(v, w) such that to is active and blocked and f(v, to) > 0. It consists of decreasing f(v, w)

by min{e1 (t), f(v, to)). A block operation applies to an unblocked vertex v such that, for

every arc (v, w), either uf(v, to) = 0 or w is blocked. It consists of making v blocked.

The generic blocking flow algorithm consists of performing push, pull and block operations

in any order until no vertex is active, at which time the current preflow is a blocking flow.

The proof of corr'Ctness resembles the proof of correctness of the generic version of refine

presented in Section 5. The generic algorithm can be implemented in a straightforward way

to run in O(nm) time. This result is analogous to the O(n 2 m) time bound for the generic

version of refine derived in Section 6. In the analysis, vertex blockings play the same role

as relabelings do in the analysis of refine. There are at most n - 2 vertex blockings.

We improve the algorithm by introducing the discharge operation. A discharge operation

applies to an active vertex v. The operation applies a push, block, or pull operation to v,

whichever applies, and repeats this until v becomes inactive. The first-active blocking flow

algorithm, similar to the first-active version of refine, uses a list L to determine the order

in which to process active vertices. List L contains all vertices of G, initially in topological

order. The algorithm consists of repeating the following three steps until there are no active

vertices: Select the first active vertex on L, say v. Apply a discharge operation to v. If the

discharge has made v blocked, move v to the front of L. This algorithm runs in 0(n 2) time.

43



The key obsermtion is that each vertex can be discharged at most once between vertex

blodkiugs.

We improve the algorithm further by implementing it using finger search trees to rep-

resent L and dynamic trees to reptesent the set of arcs eligible for pushing and pulling.

The details and the analysis are similar to those of the tree version of refine presented in

Section 7. The runing time of this algorithm is 0(mlog(n2/m)). The factor of n savings

over the time bound of the tree versioa of refine comes from the fact that there are 0(n)

vertex blockings instead of O(n2) relabelings.

This algorithm in combination with Theorem 8.3 gives the following result:

Theorem 8.6 The blocking flow approach to the minimum cost circulation problem has an

0(nm log(n2 /m) min{log(nC), m log n})-time implementation.

9 Practical Improvements

In this section we discuss the practicality of our approach. Initial practical experience with
scaling algorithms for the minimum-cost flow problem was disappointing. As a result, such
algorithms were condemned as impractical in the literature, and simplex-based algorithms

continued to be used in practice. This situation did not change even though new scaling

algorithms were developed. Recently, however, Bland and Jensen conducted a study to

compare their scaling algorithm with simplex-based codes [7]. They found their algorithm

competitive, and concluded that the practicality of scaling algorithms should be investigated

further. Their results are especially promising since they used the maximum flow algorithm

of Mahotra, Promodh Kumar, and Maheshwari [38] as a subroutine. This algorithm,

though simple to code, is likely to be slower in practice than other, newer maximum flow

algorithms, e.g. [1,29]. The results of Bland and Jensen also agree with the results of

Bateson [3], who compared Gabow's scaling algorithm for the assignment problem [19] with
the Hungarian method.

We are extremely optimistic that our approach will yield highly practical algorithms.

Our optimism is based on the work of Bland and Jensen discussed above, as well as the first

author's experience [261 with sequential and parallel implementations of our maximum flow

algorithm. (See also [42].) A careful experimental study is needed, however, before a claim

of practicality can be made with certainty.

We suggest several heuristics that may improve the practical performance of the algo-

. .- ,'44



rithm. We expect that in practice the extra overhead needed to make the algorithm strongly

polynomial is likely to make the algorithm slower, and should be omitted. Instead, we can
avoid calling refine until the current error parameter is within a factor of two of minimum.
That is, after halving c but before calling refine, we do a shortest path computation as

described in Section 3.1 to discover whether the current circulation is c-optimal. (If not,

the shortest path algorithm will find a negative-cost cycle.) If so, we halve c again and

repeat. If not, we call refine. With this method, the bound on the number of iterations is

still O(log(nC)), but some of the iterations require only a shortest path computation.

Another improvement is to delete arcs when their flows become fixed, as suggested by
the lemma of Tardos discussed in Section 4.2. In order to delete arcs whose flows can be
fixed, we modify the capacities after every iteration of the outer loop by subtracting the

current circulation. This transforms the problem so that the current circulation is the zero

circulation. We then delete every arc (v, w) whose reduced cost has absolute value at least

ne. This modified algorithm needs only 0(m) extra time per iteration of the outer loop.

Our approach to the minimum-cost flow problem allows a great degree of flexibility. For

example, the refine subroutine is used to reduce the error parameter by a factor of two,
but it can instead be used to reduce the error parameter c by any factor (at the cost of

increasing the time bound by a related factor). Although fine-tuning this factor does not

improve the asymptotic running time of the algorithm, it will affect practical performance.
Also, as in the case of the maximum flow algorithm, alternative orderings of the update

operations push and relabel may result in better performance.

Another potential way of improving the performance of the generic refine subroutine
would be to use shortest path computations during the execution of the subroutine to

update the price function. This improvement would be similar to using breadth-first search

to update distance labels in our maximum flow algorithm [29]. One would have to be

careful, however, to assure that these updates of the price function preserve the acyclicity

of the admissible graph.

10 Remarks

In this section we discuss possible theoretical improvements and extensions of our results.

The most obvious open question is whether the refine procedure can be modified so that
it runs faster. The analogy with our maximum flow algorithm suggests the possibility

of obtaining an 0(n ' log U + nm) bound for a suitable version of refine, based on the

45



I0(n2 log U .+-nm)-time maximum flow algorithm of Ahuja and Orlin [11]. Unfortunately, the r

example in the appendix suggests that some new idea will be needed if this bound is to be
obtained. Another question is whether the strongly polynomial framework of Section 4.2
can be improved to reduce the number of iterations of refine by a factor of rn/n. Such an
improvement would make our approach competitive with the algorithm of Galil and Tardos
on both sparse and dense graphs.

Although all the versions of refine that we have considered here reduce the error param-
eter by a constant factor, one can consider other implementations of refine that reduce the
error parameter by a factor that depends on the parameters of the input problem. In our
recent paper [28], we describe an implementation of refine that reduces the error parame-

ter by a factor of (n - 1)/n. The resulting running time bounds are competitive with the

bounds of this paper.

Our general approach is to scale costs. It would be interesting to see if there is a similar
method that scales capacities, or that scales costs and capacities simultaneously. Such a
double scaling approach might lead to improved complexity bounds.

Both the maximum flow problem and the shortest path problem are special cases of
the minimum-cost flow problem. Our result gives a bound for the minimum-cost flow
problem only a logarithmic factor larger than the sum of the best known bounds for these
subproblems. A nice extension would be a reduction of the minimum-cost flow problem to
the solution of a logarithmic number of maximum flow and shortest path problems.

A more general question is whether the scaling approach can be used to efficiently solve
other network optimization problems. Natural candidates include problems involving flows
with gains and multicommodity flow problems.

If all edges have unit capacities, all pushes performed by the generic algorithm are sat-
urating, and the generic minimum-cost circulation algorithm runs in O(nm log(nC)) time.

Using the blocking flow approach presented in Section 8, Harold Gabow and the second au-
thor [20,21] have obtained improved algorithms for solving a minimum-cost flow problem on
a network with small capacities. Such a problem can be solved in

O(n2 /3 U1/m log(n2/m)log(nC)) time, assuming that the graph contains no multiple arcs.

If U = 0(1), the bound becomes O(min{ml/ 2 , n2/ 3 }m log(nC)). The approach also gives an

algorithm for the assignment problem (bipartite weighted matching) running in

O(nl/ 2 m log(nC)) time. The method extends to the nonbipartite weighted matching prob-

lem, giving a bound of 0((nu(m, n)logn)1 / 2,Ilog(nC)), where a(m, n) is a functional in-

46

I



verse of Ackermann's function. In this case the algorithm becomes much more complicated,

because sophisticated data structures are needed to implement it efficiently. The best

previously bound is O(n3/4mlogC) for both bipartite and nonbipartite weighted match-

ing [18,19]. The new bounds for weighted matching are close to the best known bound,

O(nl/2m), for maximum cardinality matching [31,40]. The new nonbipartite weighted

matching algorithm also specializes in the case of maximum cardinality matching to yield

an O(nl/ 2m)-time algorithm that is somewhat simpler than that of Micali and Vazirani

[40].

Appendix. A Hard Network for the First-In, First-Out Al-
gorithm

The first-in, first-out (FIFO) implementation of refine, described in Section 6.2, can make

Q(n0 ) passes over its queue. A network on which this can happen is shown in Figure 16.

The network consists of two paths, xn, xn-.,..., x, and Yl, y2,..., y,,, and three extra arcs,

(z1, Y ), (yn, X), and (Xz, x). The arcs have the following residual capacities and costs,

where h is a sufficiently large integer (h = n 2 will do).

uf(xi,xi-1) = h, c(xi,z- 1 ) = 1 for 2 < i < n
u1 (y i, yi+ ) =h, c(yj,yji+)= -2 for 1 <i< n-1
uf = h- 1, c(xl,yj) = 0
U=(On,Zn) h, C(n, Xn)= -2
uf(X,, X0= h, c(xn, 1 ) = 1

All reverse arcs (e.g. (xi, xi+)) have a residual capacity of zero.

Suppose refine is given this network with the zero flow, the zero price function, and

= 1. First, each arc (yi, yi+l) is saturated, as is the arc (yn, Zn). This results in an excess

of h at vertex Xn and an excess of -h at vertex yl. Next (with unfavorable tiebreaking) the

excess of h moves from Xz along the path to x1 , in the process increasing the potential of
each of the vertices X2, x3,... , ,, to two. After the potential of x, is raised to one, h - 1
of the excess flows to yl, where it cancels all but one unit of negative excess. The potential

of z, then is increased to two. The current state is shown in Figure 17; the only remaining

positive excess, of one unit, is on z 1 .

Now the unit of excess moves repeatedly around the cycle X1 , z 2 ,... X, Xi. The first

time this happens, the price of xn goes up by two. The second time, the price of X,_.

47



h, I

,h,t h, I h, i h, i

x1 x2  x3  xn-2 xn-I xn

h-i,O h,-2

yt Y2 Y3 Yn-2 Yn-i Yn

h,-2 h,-2 h, -2 h, -2

Figure 16: A hard network for the first-in, first-out algorithm.

hi, i

h,-1 2 h, -1 2 2 h, -1 2:h,- I
2 002

K 4I  X2  X3  xn-2 xn-i Xn

h-1,2 h,O

Yt Y2 Y3 Yn-2 Yn-i Yn

0 h,2 0 h,2 0 0 h,2 0 h,2 0

Figure 17: The residual graph after h - 1 units of excess are canceled. The reduced costs and
vertex prices are shown. Vertex x, has one unit of excess; vertex y/, one negative unit of excess.

48

, ,



goes up by two. After n iterations, all of z, X2,.. . , Xn have increased by two in price.

Then the process repeats. The unit of excess will take occasional excursions along the path

X,, YnYn-1,..., yi, but it will return to Xn and continue going around the cycle. Finally,

after 1(n 2) traversals of the cycle, the unit of excess will succeed in traversing the entire

path xn, Yn, Y,-1,..., yi, and refine will terminate. Since there are n passes over the queue

of the FIFO algorithm for each traversal of the cycle, the total number of FIFO passes is

fQ(n 3 ).

Acknowlegements

We thank Harold Gabow, Charles Leiserson, Serge Plotkin, Ronald Rivest, and David

Shmoys for many extremely helpful suggestions, ideas and comments. We also thank Robert

Bland, who proposed the interpretation of the generic algorithm in terms of kilter diagrams.

References

(1] R. K. Ahuja and J. B. Orlin. A Fast and Simple Algorithm for the Maximum Flow

Problem. Technical Report 1905-87, Sloan School of Management, M.I.T., 1987.

(2] B. Awerbuch. Complexity of network synchronization. J. Assoc. Comput. Mach.,

32:804-823, 1985.

[3] C. A. Bateson. Performance comparison of two algorithms for weighted bipartite

matchings. 1985. M.S. thesis, Department of Computer Science, University of Col-

orado.

[4] D. P. Bertsekas. Distributed Asynchronous Relaxation Methods for Linear Network

Flow Problems. Technical Report LIDS-P-1986, Lab. for Decision Systems, M.I.T.,

September 1986. (Revised November, 1986).

[5] D. P. Bertsekas and J. Eckstein. Distributed asynchronous relaxation methods for

linear network flow problems. In Proc. IFAC '87, Munich, Germany, 1987. (to appear).

[6] D. P. Bertsekas and P. Tseng. Relaxation methods for minimum cost ordinary and

generalized network flow problems. Oper. Res., (to appear).

49



[7] R. G. Bland and D. L. Jensen. On the Computational Behavior of a Polynomial-Time

Network Flow Algorithm. Technical Report 661, School of Operations Research and

Industrial Engineering, Cornell University, 1985.

[8] R. G. Busacker and P. J. Gowen. A Procedure for Determinimg a Family of Minimal-

Cost Network Flow Patterns. Technical Report 15, O.R.O., 1961.

[9] R. G. Busacker and T. L. Saaty. Finite Graphs and Networks: An Introduction with

Applications. McGraw-Hill, New York, NY., 1965.

[10] R. B. Dial. Algorithm 360: shortest path forest with topological ordering. Comm.

ACM, 12:632-633, 1969.

[11] E. A. Dinic. Algorithm for solution of a problem of maximum flow in networks with

power estimation. Soviet Math. Dokl., 11:1277-1280, 1970.

[12] J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic efficiency for

network flow problems. J. Assoc. Comput. Mach., 19:248-264, 1972.

[13] L. R. Ford, Jr. and D. R. Fulkerson. Flows in Networks. Princeton Univ. Press,

P-inceton, NJ., 1962.

[14] S. Fortune and J. Wyllie. Parallelism in random access machines. In Proc. 10th ACM

Symp. on Theory of Computing, pages 114-118, 1978.

[15] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network

optimization algorithms. In Proc. 25th IEEE Symp. on Foundations of Computer

Science, pages 338-346, 1984. (To appear in J. Assoc. Comput. Mach.).

[16] S. Fujishige. A capacity-rounding algorithm for the minimum-cost circulation problem:

a dual framework of the tardos algorithm. Math. Prog., 35:298-308, 1986.

[17] D. R. Fulkerson. An out-of-kilter method for minimal cost flow problems. SIAM J.

Appl. Math, 9:18-27, 1961.

[18] H. N. Gabow. A scaling algorithm for weighted matching on general graphs. In Proc.

26th IEEE Symp. on Foundations of Computer Science, pages 90-100, 1985.

[19] H. N. Gabow. Scaling algorithms -for network problems. J. of Comp. and Sys. Sci..

31:148-168, 1985.

50



[20] H. N. Gabow and R. E. Tarjan. A faster scaling algorithm for general weighted match-

ing. (To appear).

[211 H. N. Gabow and R. E. Tarjan. Faster scaling algorithms for network problems. (To

appear).

[221 Z. Gail. An O(V 5 / 3 E2 / 3) algorithm for the maximal flow problem. Acta Informatica,

14:221-242, 1980.

[23] Z. Galil and E. Tardos. An O(n 2 log n(m + n log n)) min-cost flow algorithm. In Proc.

27th IEEE Symp. of Foundations of Computer Science, pages 1-9, 1986.

[24] R. G. Gallager, P. A. Humblet, and P. M Spira. A distributed algorithm for minimum-

weight spanning trees. ACM Transactions on Programming Languages and Systems,

5:66-77, 1983.

[25] S. I. Gass. Linear Programming: Methods and Applications. McGraw-Hill, 1958.

[26] A. V. Goldberg. Efficient Graph Algorithms for Sequential and Parallel Computers.

PhD thesis, M.I.T., January 1987. (Also available as Technical Report TR-374, Lab.

for Computer Science, M.I.T., 1987).

[27] A. V. Goldberg. A New Max-Flow Algorithm. Technical Report MIT/LCS/ TM-291,

Laboratory for Computer Science, M.I.T., 1985.

[28] A. V. Goldberg and R. E. Tarjan. Finding Minimum-Cost Circulations by Canceling

Negative Cycles. Technical Report MIT/LCS/TM-333, Laboratory for Computer Sci-

ence, M.I.T., 1987. Also available as Technical Report CS-TR 107-87, Department of

Computer Science, Princeton University.

[29] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum flow problem. In

Proc. 18th ACM Symp. on Theory of Computing, pages 136-146, 1986. (To appear in

J. Assoc. Comput. Mach.).

[30] A. V. Goldberg and R. E. Tarjan. Solving minimum-cost flow problems by successive

approximation. In Proc. 19th ACM Symp. on Theory of Computing, pages 7-18, 1987.

[31] J. E. Hopcroft and R. M. Karp. An n5/ 2 algorithm for maximum matching in bipartite

graphs. SIAM J. Comput., 2:225-231, 1973.

i 51



[32] P. A. Jensen and J. W. Barnes. Network Flow Programming. J. Wiley & Sons, 1980.

(33] W. S. Jewell. Optimal Flow through Networks. Technical Report 8, M.I.T., 1958.

[34] R. M. Karp. A characterization of the minimum cycle mean in a digraph. Discrete

Math., 23:309-311, 1978.

[35] A. V. Karzanov. Determining the maximal flow in a network by the method of prefiows.

Soviet Math. Dok., 15:434--437, 1974.

[36] E. L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Reinhart,

and Winston, New York, NY., 1976.

[37] C. Leiserson and B. Maggs. Communication-efficient parallel graph algorithms. In

Proc. of International Conference on Parallel Processing, pages 861-868, 1986.

[38) V. M. Malhotra, M. Pramodh Kumar, and S. N. Maheshwari. An O(1V13 ) algorithm

for finding maximum flows in networks. Inform. Process. Lett., 7:277-278, 1978.

[39] K. Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching. Springer-

Verlag, Berlin, 1984.

[40] S. Micali and V. V. Vazirani. An O(v/IVIIEI) algorithm for finding maximum matching

in general graphs. In Proc. 21st IEEE Symp. on Found. of Comp. Sci., pages 17-27,

1980.

[41] G. J. Minty. Monotone networks. Proc. Roy. Soc. London, A (257):394-212, 1960.

[42] A. T. Ogielski. Integer optimization and zero-temperature fixed point in Ising random-

field systems. Physical Review Lett., 57:1251-1254, 1986.

[43] J. B. Orlin. Genuinely Polynomial Simplex and Non-Simplex Algorithms for the Mini-

mum Cost Flow Problem. Technical Report No. 1615-84, Sloan School of Management,

MIT, December 1984.

[44] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and

Complexity. Prentice-Hall, Englewood Cliffs, NJ, 1982.

[45] H. Rbck. Scaling techniques for minimal cost network flows. In U. Pape, editor,
Discrete Structures and Algordthms, pages 181-191, Carl Hansen, Miinich, 1980.

52



[461 Y. Shiloach and U. Vishkin. An O(logn) parallel connectivity algorithm. J. Algo-

rithms, 3:57-67, 1982.

[47] D. D. Sleator. An O(nmlogn) Algorithm for Maximum Network Flow. Technical Re-

port STAN-CS-80-831, Computer Science Department, Stanford University, Stanford,

CA, 1980.

[48] D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. J. Comput. System

Sci., 26:362-391, 1983.

[49] D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees. J. Assoc. Comput.

Mach., 32:652-686, 1985.

[50] E. Tardos. A strongly polynomial minimum cost circulation algorithm. Combinatorica,

5(3):247-255, 1985.

[51] R. E. Tarjan. Amortized computational complexity. SIAM J. Alg. Disc. Math., 6:306-

318, 1985.

[52] R. E. Tarjan. Data Structures and Network Algorithms. Society for Industrial and

Applied Mathematics, Philadelphia, PA, 1983.

[53] R. E. Tarjan. A simple version of Karzanov's blocking flow algorithm. Operations

Research Letters, 2:265-268, 1984.

[54] R.E. Tarjan and C.J. Van Wyk. An 0(nloglog n)-time algorithm for triangulating a

simple polygon. SIAM J. Comput., (to appear).

[55] R. A. Wagner. A shortest path algorithm for edge-sparse graphs. JACM, 23:50-57,

1976.

53



OFFICIAL DISTRIBUTION LIST

Director 2 Copies
Information Processing Techniques Office
Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

Office of Naval Research 2 Copies
800 North Quincy Street
Arlington, VA 22217
Attn: Dr. R. Grafton, Code 433

Director, Code 2627 6 Copies
Naval Research Laboratory
Washington, DC 20375

Defense Technical Information Center 12 Copies
Cameron Station
Alexandria, VA 22314

National Science Foundation 2 Copies
Office of Computing Activities
1800 G. Street, N.W.
Washington, DC 20550
Attn: Program Director

Dr. E.B. Royce, Code 38 1 Copy
Head, Research Department
Naval Weapons Center
China Lake, CA 93555

Dr. G. Hooper, USNR 1 Copy
NAVDAC-OOH
Department of the Navy
Washington, DC 20374 .1

"3t



do

/Z /q

6 Imoom / 7e (f

"0 orl 

41

I ijjjljjjjllg *1N- =,


